Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 493(1): 382-387, 2017 11 04.
Article in English | MEDLINE | ID: mdl-28887031

ABSTRACT

Cilia and flagella are evolutionarily conserved organelles that protrude from cell surfaces. Most cilia and flagella are single rod-shaped but some cilia show a variety of shapes. For example, human airway epithelial cells are multiciliated, flagella of crayfish spermatozoon are star-like shaped, and fruit fly spermatozoon extends long flagella. In Caenorhabditis elegans, cilia display morphological diversity of shapes (single, dual rod-type and wing-like and highly-branched shapes). Here we show that DCAP-1 and DCAP-2, which are the homologues of mammalian DCP1 and DCP2 mRNA decapping enzymes, respectively, are involved in formation of dual rod-type and wing-like shaped cilia in C. elegans. mRNA decapping enzyme catalyzes hydrolysis of 5' cap structure of mRNA, which leads to degradation of mRNA. Rescue experiments showed that DCAP-2 acts not in glial cells surrounding cilia but in neurons. This is the first evidence to demonstrate that mRNA decapping is involved in ciliary shape formation.


Subject(s)
Caenorhabditis elegans/cytology , Caenorhabditis elegans/enzymology , Cell Shape/physiology , Cilia/enzymology , Cilia/ultrastructure , Endoribonucleases/metabolism , Neurons/ultrastructure , Animals , Neurons/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...