Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 23(24): 7694-710, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26643218

ABSTRACT

We report the discovery of benzothiazoles, a novel anti-mycobacterial series, identified from a whole cell based screening campaign. Benzothiazoles exert their bactericidal activity against Mycobacterium tuberculosis (Mtb) through potent inhibition of decaprenylphosphoryl-ß-d-ribose 2'-oxidase (DprE1), the key enzyme involved in arabinogalactan synthesis. Specific target linkage and mode of binding were established using co-crystallization and protein mass spectrometry studies. Most importantly, the current study provides insights on the utilization of systematic medicinal chemistry approaches to mitigate safety liabilities while improving potency during progression from an initial genotoxic hit, the benzothiazole N-oxides (BTOs) to the lead-like AMES negative, crowded benzothiazoles (cBTs). These findings offer opportunities for development of safe clinical candidates against tuberculosis. The design strategy adopted could find potential application in discovery of safe drugs in other therapy areas too.


Subject(s)
Alcohol Oxidoreductases/metabolism , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Alcohol Oxidoreductases/antagonists & inhibitors , Bacterial Proteins/antagonists & inhibitors , Drug Design , Humans , Molecular Docking Simulation , Structure-Activity Relationship , Tuberculosis/drug therapy , Tuberculosis/microbiology
2.
J Med Chem ; 57(11): 4761-71, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24818517

ABSTRACT

A novel pyrazolopyridone class of inhibitors was identified from whole cell screening against Mycobacterium tuberculosis (Mtb). The series exhibits excellent bactericidality in vitro, resulting in a 4 log reduction in colony forming units following compound exposure. The significant modulation of minimum inhibitory concentration (MIC) against a Mtb strain overexpressing the Rv3790 gene suggested the target of pyrazolopyridones to be decaprenylphosphoryl-ß-D-ribose-2'-epimerase (DprE1). Genetic mapping of resistance mutation coupled with potent enzyme inhibition activity confirmed the molecular target. Detailed biochemical characterization revealed the series to be a noncovalent inhibitor of DprE1. Docking studies at the active site suggest that the series can be further diversified to improve the physicochemical properties without compromising the antimycobacterial activity. The pyrazolopyridone class of inhibitors offers an attractive non-nitro lead series targeting the essential and vulnerable DprE1 enzyme for the discovery of novel antimycobacterial agents to treat both drug susceptible and drug resistant strains of Mtb.


Subject(s)
Antitubercular Agents/chemical synthesis , Bacterial Proteins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Oxidoreductases/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyridones/chemical synthesis , Alcohol Oxidoreductases , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , Catalytic Domain , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Molecular Docking Simulation , Mutation , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/isolation & purification , Oxidoreductases/genetics , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyridones/chemistry , Pyridones/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...