Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Clin Invest ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38885336

ABSTRACT

Osteogenesis imperfecta (OI) type V is the second most common form of OI, distinguished by hyperplastic callus formation and calcification of the interosseous membranes in addition to bone fragility. It is caused by a recurrent, dominant pathogenic variant (c.-14C>T) in IFITM5. Here, we generated a conditional Rosa26 knock-in mouse model to study the mechanistic consequences of the recurrent mutation. Expression of the mutant Ifitm5 in osteo-chondroprogenitor or chondrogenic cells resulted in low bone mass and growth retardation. Mutant limbs showed impaired endochondral ossification, cartilage overgrowth, and abnormal growth plate architecture. The cartilage phenotype correlates with the pathology reported in OI type V patients. Surprisingly, expression of mutant Ifitm5 in mature osteoblasts caused no obvious skeletal abnormalities. In contrast, earlier expression in osteo-chondroprogenitors was associated with increase in the skeletal progenitor population within the periosteum. Lineage tracing showed that chondrogenic cells expressing the mutant Ifitm5 showed decreased differentiation into osteoblastic cells in diaphyseal bone. Moreover, mutant IFITM5 disrupts early skeletal homeostasis in part by activating ERK signaling and downstream SOX9 protein, and inhibition of these pathways partially rescued the phenotype in mutant animals. These data identify the contribution of a signaling defect altering osteo-chondroprogenitor differentiation as a driver in the pathogenesis of OI type V.

2.
Am J Hum Genet ; 111(5): 841-862, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38593811

ABSTRACT

RNA sequencing (RNA-seq) has recently been used in translational research settings to facilitate diagnoses of Mendelian disorders. A significant obstacle for clinical laboratories in adopting RNA-seq is the low or absent expression of a significant number of disease-associated genes/transcripts in clinically accessible samples. As this is especially problematic in neurological diseases, we developed a clinical diagnostic approach that enhanced the detection and evaluation of tissue-specific genes/transcripts through fibroblast-to-neuron cell transdifferentiation. The approach is designed specifically to suit clinical implementation, emphasizing simplicity, cost effectiveness, turnaround time, and reproducibility. For clinical validation, we generated induced neurons (iNeurons) from 71 individuals with primary neurological phenotypes recruited to the Undiagnosed Diseases Network. The overall diagnostic yield was 25.4%. Over a quarter of the diagnostic findings benefited from transdifferentiation and could not be achieved by fibroblast RNA-seq alone. This iNeuron transcriptomic approach can be effectively integrated into diagnostic whole-transcriptome evaluation of individuals with genetic disorders.


Subject(s)
Cell Transdifferentiation , Fibroblasts , Neurons , Sequence Analysis, RNA , Humans , Cell Transdifferentiation/genetics , Fibroblasts/metabolism , Fibroblasts/cytology , Sequence Analysis, RNA/methods , Neurons/metabolism , Neurons/cytology , Transcriptome , Reproducibility of Results , Nervous System Diseases/genetics , Nervous System Diseases/diagnosis , RNA-Seq/methods , Female , Male
3.
JCI Insight ; 8(17)2023 09 08.
Article in English | MEDLINE | ID: mdl-37490345

ABSTRACT

Nitric oxide (NO) is a critical signaling molecule that has been implicated in the pathogenesis of neurocognitive diseases. Both excessive and insufficient NO production have been linked to pathology. Previously, we have shown that argininosuccinate lyase deficiency (ASLD) is a novel model system to investigate cell-autonomous, nitric oxide synthase-dependent NO deficiency. Humans with ASLD are at increased risk for developing hyperammonemia due to a block in ureagenesis. However, natural history studies have shown that individuals with ASLD have multisystem disease including neurocognitive deficits that can be independent of ammonia. Here, using ASLD as a model of NO deficiency, we investigated the effects of NO on brain endothelial cells in vitro and the blood-brain barrier (BBB) in vivo. Knockdown of ASL in human brain microvascular endothelial cells (HBMECs) led to decreased transendothelial electrical resistance, indicative of increased cell permeability. Mechanistically, treatment with an NO donor or inhibition of Claudin-1 improved barrier integrity in ASL-deficient HBMECs. Furthermore, in vivo assessment of a hypomorphic mouse model of ASLD showed increased BBB leakage, which was partially rescued by NO supplementation. Our results suggest that ASL-mediated NO synthesis is required for proper maintenance of brain microvascular endothelial cell functions as well as BBB integrity.


Subject(s)
Argininosuccinic Aciduria , Mice , Animals , Humans , Argininosuccinic Aciduria/genetics , Argininosuccinic Aciduria/metabolism , Argininosuccinic Aciduria/pathology , Nitric Oxide/metabolism , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Claudins/metabolism , Disease Models, Animal
4.
J Clin Invest ; 132(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35113812

ABSTRACT

BACKGROUNDCurrently, there is no disease-specific therapy for osteogenesis imperfecta (OI). Preclinical studies demonstrate that excessive TGF-ß signaling is a pathogenic mechanism in OI. Here, we evaluated TGF-ß signaling in children with OI and conducted a phase I clinical trial of TGF-ß inhibition in adults with OI.METHODSHistology and RNA-Seq were performed on bones obtained from children. Gene Ontology (GO) enrichment assay, gene set enrichment analysis (GSEA), and Ingenuity Pathway Analysis (IPA) were used to identify dysregulated pathways. Reverse-phase protein array, Western blot, and IHC were performed to evaluate protein expression. A phase I study of fresolimumab, a TGF-ß neutralizing antibody, was conducted in 8 adults with OI. Safety and effects on bone remodeling markers and lumbar spine areal bone mineral density (LS aBMD) were assessed.RESULTSOI bone demonstrated woven structure, increased osteocytes, high turnover, and reduced maturation. SMAD phosphorylation was the most significantly upregulated GO molecular event. GSEA identified the TGF-ß pathway as the top activated signaling pathway, and IPA showed that TGF-ß1 was the most significant activated upstream regulator mediating the global changes identified in OI bone. Treatment with fresolimumab was well-tolerated and associated with increases in LS aBMD in participants with OI type IV, whereas participants with OI type III and VIII had unchanged or decreased LS aBMD.CONCLUSIONIncreased TGF-ß signaling is a driver pathogenic mechanism in OI. Anti-TGF-ß therapy could be a potential disease-specific therapy, with dose-dependent effects on bone mass and turnover.TRIAL REGISTRATIONClinicalTrials.gov NCT03064074.FUNDINGBrittle Bone Disorders Consortium (U54AR068069), Clinical Translational Core of Baylor College of Medicine Intellectual and Developmental Disabilities Research Center (P50HD103555) from National Institute of Child Health and Human Development, USDA/ARS (cooperative agreement 58-6250-6-001), and Sanofi Genzyme.


Subject(s)
Osteogenesis Imperfecta , Adult , Bone Density , Bone and Bones/metabolism , Child , Humans , Lumbar Vertebrae/metabolism , Osteogenesis Imperfecta/drug therapy , Osteogenesis Imperfecta/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
5.
J Clin Invest ; 131(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33373331

ABSTRACT

Previous studies have shown that nitric oxide (NO) supplements may prevent bone loss and fractures in preclinical models of estrogen deficiency. However, the mechanisms by which NO modulates bone anabolism remain largely unclear. Argininosuccinate lyase (ASL) is the only mammalian enzyme capable of synthesizing arginine, the sole precursor for nitric oxide synthase-dependent (NOS-dependent) NO synthesis. Moreover, ASL is also required for channeling extracellular arginine to NOS for NO production. ASL deficiency (ASLD) is thus a model to study cell-autonomous, NOS-dependent NO deficiency. Here, we report that loss of ASL led to decreased NO production and impairment of osteoblast differentiation. Mechanistically, the bone phenotype was at least in part driven by the loss of NO-mediated activation of the glycolysis pathway in osteoblasts that led to decreased osteoblast differentiation and function. Heterozygous deletion of caveolin 1, a negative regulator of NO synthesis, restored NO production, osteoblast differentiation, glycolysis, and bone mass in a hypomorphic mouse model of ASLD. The translational significance of these preclinical studies was further reiterated by studies conducted in induced pluripotent stem cells from an individual with ASLD. Taken together, our findings suggest that ASLD is a unique genetic model for studying NO-dependent osteoblast function and that the NO/glycolysis pathway may be a new target to modulate bone anabolism.


Subject(s)
Argininosuccinic Aciduria/metabolism , Bone and Bones/metabolism , Cell Differentiation , Glycolysis , Nitric Acid/metabolism , Osteoblasts/metabolism , Adolescent , Adult , Animals , Argininosuccinic Aciduria/genetics , Argininosuccinic Aciduria/pathology , Bone and Bones/pathology , Child , Disease Models, Animal , Female , Humans , Male , Mice , Middle Aged , Osteoblasts/pathology
6.
JBMR Plus ; 3(5): e10118, 2019 May.
Article in English | MEDLINE | ID: mdl-31131341

ABSTRACT

Osteogenesis imperfecta (OI) is characterized by low bone mass and bone fragility. Using data from a large cohort of individuals with OI from the Osteogenesis Imperfecta Foundation's linked clinical research centers, we examined the association between exposure to bisphosphonate (BPN) treatment (past or present) and lumbar spine (LS) areal bone mineral density (aBMD), fractures, scoliosis, and mobility. From 466 individuals, we obtained 1394 participant-age LS aBMD data points. Though all OI subtypes were examined, primary analyses were restricted to type I OI (OI-1). Using linear regression, we constructed expected OI-1 LS aBMD-for-age curves from the data from individuals who had never received BPN. LS aBMD in those who had been exposed to BPN was then compared with the computed expected aBMD. BPN exposure in preadolescent years (age <14 years) was associated with a LS aBMD that was 9% more than the expected computed values in BPN-naïve individuals (p < 0.01); however, such association was not observed across all ages. Exposure to i.v. BPN and treatment duration >2 years correlated with LS aBMD in preadolescent individuals. BPN exposure also had a significant association with non-aBMD clinical outcome variables. Logistic regression modeling predicted that with BPN exposure, a 1-year increase in age would be associated with an 8.2% decrease in fracture probability for preadolescent individuals with OI-1, compared with no decrease in individuals who had never received any BPN (p < 0.05). In preadolescent individuals with OI-1, a 0.1 g/cm2 increase in LS aBMD was associated with a 10.6% decrease in scoliosis probability, compared with a 46.8% increase in the BPN-naïve group (p < 0.01). For the same changes in age and LS aBMD in preadolescent individuals, BPN exposure was also associated with higher mobility scores (p < 0.01), demonstrating that BPN treatment may be associated with daily function. © 2018 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

7.
J Bone Miner Res ; 33(2): 307-315, 2018 02.
Article in English | MEDLINE | ID: mdl-29044725

ABSTRACT

Sclerostin (SOST), a glycoprotein primarily derived from osteocytes, is an important regulator of bone remodeling. Osteogenesis imperfecta (OI) is a heritable disorder of bone characterized by low bone mass, bone fragility, recurrent fractures, and bone deformities. Altered SOST-mediated signaling may have a role in pathogenesis of type I collagen-related OI; however, this has not been evaluated in humans. We measured serum SOST levels in adults with OI who were enrolled in a randomized, placebo-controlled clinical trial that evaluated the effects of osteoanabolic therapy with teriparatide. Compared with age- and sex-matched control participants, mean SOST levels were lower in those with type I or types III/VI OI (p < 0.0001). Receiver operating curve analysis revealed that sclerostin alone or sclerostin plus bone mineral content discriminated patients with OI from controls (area under the curve 0.80 and 0.87, respectively). SOST levels increased in the group of patients with type I OI during therapy with teriparatide (compared with placebo, p = 0.01). The increase was significant at 6, 12, and 24 months of therapy (p ≤ 0.02) and was apparent as early as 3 months (p = 0.06). The magnitude of increases in SOST levels during therapy was inversely correlated with increases in vertebral volumetric bone mineral density (vBMD). Overall, these results suggest that: 1) SOST regulation is fundamentally altered in osteogenesis imperfecta; 2) serum SOST levels could be a biomarker of OI in adults; and 3) alterations in SOST may help predict the response to anabolic therapies in OI. © 2017 American Society for Bone and Mineral Research.


Subject(s)
Bone Morphogenetic Proteins/blood , Osteogenesis Imperfecta/blood , Osteogenesis Imperfecta/drug therapy , Teriparatide/therapeutic use , Adaptor Proteins, Signal Transducing , Adult , Bone Density/drug effects , Cancellous Bone/drug effects , Cancellous Bone/physiopathology , Case-Control Studies , Female , Genetic Markers , Humans , Male , Middle Aged , Osteogenesis Imperfecta/physiopathology , ROC Curve , Teriparatide/pharmacology
8.
J Nutr ; 147(4): 549-555, 2017 04.
Article in English | MEDLINE | ID: mdl-28275102

ABSTRACT

Background: Glutamine is considered the main precursor for citrulline synthesis in many species, including humans. The transfer of 15N from 2-[15N]-glutamine to citrulline has been used as evidence for this precursor-product relation. However, work in mice has shown that nitrogen and carbon tracers follow different moieties of glutamine and that glutamine contribution to the synthesis of citrulline is minor. It is unclear whether this small contribution of glutamine is also true in other species.Objective: The objective of the present work was to determine the contribution of glutamine to citrulline production by using nitrogen and carbon skeleton tracers in multiple species.Methods: Humans (n = 4), pigs (n = 5), rats (n = 6), and mice (n = 5) were infused with l-2-[15N]- and l-[2H5]-glutamine and l-5,5-[2H2]-citrulline. The contribution of glutamine to citrulline synthesis was calculated by using different ions and fragments: glutamine M+1 to citrulline M+1, 2-[15N]-glutamine to 2-[15N]-citrulline, and [2H5]-glutamine to [2H5]-citrulline.Results: Species-specific differences in glutamine and citrulline fluxes were found (P < 0.001), with rats having the largest fluxes, followed by mice, pigs, and humans (all P < 0.05). The contribution of glutamine to citrulline as estimated by using glutamine M+1 to citrulline M+1 ranged from 88% in humans to 46% in pigs. However, the use of 2-[15N]-glutamine and 2-[15N]-citrulline as precursor and product yielded values of 48% in humans and 28% in pigs. Furthermore, the use of [2H5]-glutamine to [2H5]-citrulline yielded lower values (P < 0.001), resulting in a contribution of glutamine to the synthesis of citrulline of ∼10% in humans and 3% in pigs.Conclusions: The recycling of the [15N]-glutamine label overestimates the contribution of glutamine to citrulline synthesis compared with a tracer that follows the carbon skeleton of glutamine. Glutamine is a minor precursor for the synthesis of citrulline in humans, pigs, rats, and mice.


Subject(s)
Citrulline/biosynthesis , Glutamine/blood , Adult , Animals , Carbon Isotopes , Deuterium , Female , Humans , Isotope Labeling , Male , Mice , Mice, Inbred C57BL , Middle Aged , Nitrogen Isotopes , Rats , Rats, Sprague-Dawley , Species Specificity , Swine
9.
Nature ; 527(7578): 379-383, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26560030

ABSTRACT

Cancer cells hijack and remodel existing metabolic pathways for their benefit. Argininosuccinate synthase (ASS1) is a urea cycle enzyme that is essential in the conversion of nitrogen from ammonia and aspartate to urea. A decrease in nitrogen flux through ASS1 in the liver causes the urea cycle disorder citrullinaemia. In contrast to the well-studied consequences of loss of ASS1 activity on ureagenesis, the purpose of its somatic silencing in multiple cancers is largely unknown. Here we show that decreased activity of ASS1 in cancers supports proliferation by facilitating pyrimidine synthesis via CAD (carbamoyl-phosphate synthase 2, aspartate transcarbamylase, and dihydroorotase complex) activation. Our studies were initiated by delineating the consequences of loss of ASS1 activity in humans with two types of citrullinaemia. We find that in citrullinaemia type I (CTLN I), which is caused by deficiency of ASS1, there is increased pyrimidine synthesis and proliferation compared with citrullinaemia type II (CTLN II), in which there is decreased substrate availability for ASS1 caused by deficiency of the aspartate transporter citrin. Building on these results, we demonstrate that ASS1 deficiency in cancer increases cytosolic aspartate levels, which increases CAD activation by upregulating its substrate availability and by increasing its phosphorylation by S6K1 through the mammalian target of rapamycin (mTOR) pathway. Decreasing CAD activity by blocking citrin, the mTOR signalling, or pyrimidine synthesis decreases proliferation and thus may serve as a therapeutic strategy in multiple cancers where ASS1 is downregulated. Our results demonstrate that ASS1 downregulation is a novel mechanism supporting cancerous proliferation, and they provide a metabolic link between the urea cycle enzymes and pyrimidine synthesis.


Subject(s)
Argininosuccinate Synthase/deficiency , Aspartic Acid/metabolism , Neoplasms/metabolism , Pyrimidines/biosynthesis , Animals , Argininosuccinate Synthase/metabolism , Aspartate Carbamoyltransferase/metabolism , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/metabolism , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Cell Line, Tumor , Cell Proliferation , Citrullinemia/metabolism , Cytosol/metabolism , Dihydroorotase/metabolism , Down-Regulation , Enzyme Activation , Humans , Male , Mice , Mice, SCID , Neoplasms/enzymology , Neoplasms/pathology , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Phosphorylation , TOR Serine-Threonine Kinases/metabolism
10.
J Bone Miner Res ; 28(7): 1523-30, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23408678

ABSTRACT

In a large cohort of osteogenesis imperfecta type V (OI type V) patients (17 individuals from 12 families), we identified the same mutation in the 5' untranslated region (5'UTR) of the interferon-induced transmembrane protein 5 (IFITM5) gene by whole exome and Sanger sequencing (IFITM5 c.-14C > T) and provide a detailed description of their phenotype. This mutation leads to the creation of a novel start codon adding five residues to IFITM5 and was recently reported in several other OI type V families. The variability of the phenotype was quite large even within families. Whereas some patients presented with the typical calcification of the forearm interosseous membrane, radial head dislocation and hyperplastic callus (HPC) formation following fractures, others had only some of the typical OI type V findings. Thirteen had calcification of interosseous membranes, 14 had radial head dislocations, 10 had HPC, 9 had long bone bowing, 11 could ambulate without assistance, and 1 had mild unilateral mixed hearing loss. The bone mineral density varied greatly, even within families. Our study thus highlights the phenotypic variability of OI type V caused by the IFITM5 mutation.


Subject(s)
5' Untranslated Regions/genetics , Bone Density , Codon, Initiator/genetics , Membrane Proteins , Osteogenesis Imperfecta , Point Mutation , Adult , Child , Child, Preschool , Family , Female , Humans , Infant , Male , Middle Aged , Osteogenesis Imperfecta/diagnostic imaging , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/physiopathology , Radiography , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...