Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
GigaByte ; 2024: gigabyte114, 2024.
Article in English | MEDLINE | ID: mdl-38525218

ABSTRACT

Molecular Property Diagnostic Suite (MPDS) was conceived and developed as an open-source disease-specific web portal based on Galaxy. MPDSCOVID-19 was developed for COVID-19 as a one-stop solution for drug discovery research. Galaxy platforms enable the creation of customized workflows connecting various modules in the web server. The architecture of MPDSCOVID-19 effectively employs Galaxy v22.04 features, which are ported on CentOS 7.8 and Python 3.7. MPDSCOVID-19 provides significant updates and the addition of several new tools updated after six years. Tools developed by our group in Perl/Python and open-source tools are collated and integrated into MPDSCOVID-19 using XML scripts. Our MPDS suite aims to facilitate transparent and open innovation. This approach significantly helps bring inclusiveness in the community while promoting free access and participation in software development. Availability & Implementation: The MPDSCOVID-19 portal can be accessed at https://mpds.neist.res.in:8085/.

2.
Proteins ; 92(2): 179-191, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37789571

ABSTRACT

The cation-aromatic database (CAD) is a comprehensive repository of cation-aromatic motifs found in experimentally determined protein structures, first reported in 2007 [Proteins, 2007, 67, 1179]. The present article is an update of CAD that contains information of approximately 27.26 million cation-aromatic motifs. CAD uses three distance parameters (r, d1, and d2) to determine the position of the cation relative to the centroid of the aromatic residue and classifies the motifs as cation-π or cation-σ interactions. As of June 2023, about 193 936 protein structures were retrieved from Protein Data Bank, and this resulted in the identification of an impressive number of 27 255 817 cation-aromatic motifs. Among these motifs, spherical motifs constituted 94.09%, while cylindrical motifs made up the remaining 5.91%. When considering the interaction of metal ions with aromatic residues, 965 564 motifs are identified. Remarkably, 82.08% of these motifs involved the binding of metal ions to the amino acid HIS. Moreover, the analysis of binding preferences between cations and aromatic residues revealed that the HIS-HIS, PHE-ARG, and TRP-ARG pairs exhibited a preferential geometry. The motif pair HIS-HIS was the most prevalent, accounting for 19.87% of the total, closely followed by TYR-LYS at 10.17%. Conversely, the motif pair TRP-HIS had the lowest occurrence, representing only 4.20% of the total. The data generated help in revealing the characteristics and biological functions of cation-aromatic interactions in biological molecules. The updated version of CAD (Cation-Aromatic Database V2.0) can be accessed at https://acds.neist.res.in/cadv2.


Subject(s)
Amino Acids , Proteins , Amino Acids/chemistry , Cations/chemistry , Metals
3.
Int J Biol Macromol ; 253(Pt 5): 127207, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37797858

ABSTRACT

The Aromatic-Aromatic Interactions Database (A2ID) is a comprehensive repository dedicated to documenting aromatic-aromatic (π-π) networks observed in experimentally determined protein structures. The first version of A2ID was reported in 2011 [Int J Biol Macromol, 2011, 48, 540]. It has undergone a series of significant updates, leading to its current version, which focuses on the identification and analysis of 3,444,619 π-π networks from proteins. The geometrical parameters such as centroid-centroid distances (r) and interplanar angles (ϕ) were used to identify and characterize π-π networks. It was observed that among the 84,500 proteins with at least one aromatic π-π network, about 92.50 % of the instances are found to be either 2π (77.34 %) or 3π (15.23 %) networks. The analysis of interacting amino acid pairs in 2π networks indicated a dominance of PHE residues followed by TYR. The updated version of A2ID incorporates analysis of π-π networks based on SCOP2 and ECOD classifiers, in addition to the existing SCOP, CATH, and EC classifications. This expanded scope allows researchers to explore the characteristics and functional implications of π-π networks in protein structures from multiple perspectives. The current version of A2ID along with its extensive dataset and detailed geometric information is publicly accessible using https://acds.neist.res.in/a2idv2.


Subject(s)
Amino Acids , Proteins , Protein Conformation , Proteins/chemistry
4.
Mol Divers ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37902900

ABSTRACT

Molecular Property Diagnostic Suite Compound Library (MPDS-CL) is an open-source Galaxy-based cheminformatics web portal which presents a structure-based classification of the molecules. A structure-based classification of nearly 150 million unique compounds, obtained from 42 publicly available databases and curated for redundancy removal through 97 hierarchically well-defined atom composition-based portions, has been done. These are further subjected to 56-bit fingerprint-based classification algorithm which led to the formation of 56 structurally well-defined classes. The classes thus obtained were further divided into clusters based on their molecular weight. Thus, the entire set of molecules was put into 56 different classes and 625 clusters. This led to the assignment of a unique ID, named as MPDS-AadharID, for each of these 149,169,443 molecules. MPDS-AadharID is akin to the unique number given to citizens in India (similar to SSN in the US and NINO in the UK). The unique features of MPDS-CL are (a) several search options, such as exact structure search, substructure search, property-based search, fingerprint-based search, using SMILES, InChIKey and key-in; (b) automatic generation of information for the processing for MPDS and other galaxy tools; (c) providing the class and cluster of a molecule which makes it easier and fast to search for similar molecules and (d) information related to the presence of the molecules in multiple databases. The MPDS-CL can be accessed at https://mpds.neist.res.in:8086/ .

5.
PLoS One ; 18(8): e0289890, 2023.
Article in English | MEDLINE | ID: mdl-37556478

ABSTRACT

Drug repurposing has emerged as an important strategy and it has a great potential in identifying therapeutic applications for COVID-19. An extensive virtual screening of 4193 FDA approved drugs has been carried out against 24 proteins of SARS-CoV2 (NSP1-10 and NSP12-16, envelope, membrane, nucleoprotein, spike, ORF3a, ORF6, ORF7a, ORF8, and ORF9b). The drugs were classified into top 10 and bottom 10 drugs based on the docking scores followed by the distribution of their therapeutic indications. As a result, the top 10 drugs were found to have therapeutic indications for cancer, pain, neurological disorders, and viral and bacterial diseases. As drug resistance is one of the major challenges in antiviral drug discovery, polypharmacology and network pharmacology approaches were employed in the study to identify drugs interacting with multiple targets and drugs such as dihydroergotamine, ergotamine, bisdequalinium chloride, midostaurin, temoporfin, tirilazad, and venetoclax were identified among the multi-targeting drugs. Further, a pathway analysis of the genes related to the multi-targeting drugs was carried which provides insight into the mechanism of drugs and identifying targetable genes and biological pathways involved in SARS-CoV2.


Subject(s)
COVID-19 , Humans , Drug Repositioning , RNA, Viral , Protease Inhibitors/pharmacology , SARS-CoV-2 , Polypharmacology , Molecular Docking Simulation , Antiviral Agents/pharmacology
6.
Expert Opin Drug Discov ; 18(6): 579-590, 2023 06.
Article in English | MEDLINE | ID: mdl-37089036

ABSTRACT

INTRODUCTION: Drug discovery in academia and industry poses contrasting challenges. While academia focuses on producing new knowledge, industry is keen on product development and success in clinical trials. Galaxy is a web-based open-source computational workbench which is used to analyze large datasets and is customized to integrate analysis and visualization tools in a single framework. Depending on the methodology, one can generate customized and suitable workflows in the Galaxy platform. AREAS COVERED: Herein, the authors appraise the suitability of the Galaxy platform for developing a disease specific web portal called the Molecular Property Diagnostic Suite (MPDS). The authors include their future perspectives in the expert opinion section. EXPERT OPINION: Galaxy is ideally suited for community-based software development as the scripts, tools, and codes developed in the different programming languages can be integrated in an extremely efficient fashion. MPDS puts forth a new approach known as a disease-specific web portal which aims to implement a range of computational methods and algorithms that can be developed and shared freely across the community of computer aided drug design (CADD) scientists.


Subject(s)
Computational Biology , Software , Humans , Computational Biology/methods , Algorithms , Drug Discovery , Workflow
7.
J Mol Graph Model ; 118: 108346, 2023 01.
Article in English | MEDLINE | ID: mdl-36208593

ABSTRACT

The Vitamin D Receptor (VDR) ligand-binding domain undergoes conformation change upon the binding of VDR agonists/antagonists. Helix 12 ((H)12) is one of the important helices at VDR ligand binding and its conformational changes are controlled by the binding of agonists and antagonists molecules. Various molecular modeling studies are available to explain the agonistic and antagonistic activity of vitamin D analogs. In this work, for the first time, we attempted to generate a machine learning model with fingerprints, 2D, 3D and MD descriptors that are specific to Vitamin D analogs and VDR. Initially, 2D and 3D descriptors and fingerprints of 1003 vitamin D analogs were calculated using CDK and RDKit. The machine learning model was generated using descriptors and fingerprints. Further, 80 Vitamin D analogs (40 VDR agonists + 40 VDR antagonists) were docked in the VDR active site. 50ns MD simulation was performed for each protein-ligand complex. Different MD descriptors such as Solvent Accessible Surface Area (SASA), radius of gyration, PC1 and PC2 were calculated and considered along with CDK and RDKit descriptors as features for machine learning calculations. A few other descriptors that are related to VDR conformational changes such as conformation of the (H)12, the angle at kink were considered for machine learning model generation. It was observed that the descriptors calculated from VDR conformational changes i) were able to distinguish between agonists and antagonists ii) provide key and comprehensive information about the unique binding characteristics of agonists and antagonists iii) provide a strong basis for the machine learning model generation. Overall, this study attempts the utilization of descriptors that are specific to a protein conformation will be helpful for the generation of an efficient machine learning model.


Subject(s)
Receptors, Calcitriol , Vitamin D , Receptors, Calcitriol/chemistry , Ligands , Vitamin D/pharmacology , Vitamin D/metabolism , Protein Conformation , Machine Learning
8.
Indian J Med Microbiol ; 43: 58-65, 2023.
Article in English | MEDLINE | ID: mdl-36371334

ABSTRACT

PURPOSE: Seroepidemiology and genomic surveillance are valuable tools to investigate infection transmission during a pandemic. North East (NE) India is a strategically important region being the gateway connecting the country with Southeast Asia. Here, we examined the spread of SARS-CoV-2 in NE India during the first and second waves of COVID-19 using serological and whole genome sequencing approaches. METHODS: qRT-PCR analysis was performed on a selected population (n â€‹= â€‹16,295) from June 2020 to July 2021, and metadata was collected. Immunoassays were studied (n â€‹= â€‹2026) at three-time points (August 2020, February 2021, and June 2021) and in a cohort (n â€‹= â€‹35) for a year. SARS-CoV-2 whole genomes (n â€‹= â€‹914) were sequenced and analyzed with those obtained from the databases. RESULTS: Test positivity rates (TPR) in the first and second waves were 6.34% and 6.64% in Assam, respectively, and a similar pattern was observed in other NE states. Seropositivity in the three time points was 10.63%, 40.3%, and 46.33%, respectively, and neutralizing antibody prevalence was 90.91%, 52.14%, and 69.30%, respectively. Persistence of pan-IgG-N SARS-CoV-2 antibody for over a year was observed among three subjects in the cohort group. Normal variants dominated the first wave, while B.1.617.2 and AY-sublineages dominated the second wave in the region. The prevalence of the variants co-related well with high TPR and seropositivity rate in the region and identified mostly among vaccinated individuals. CONCLUSION: The COVID-19 first wave in the region witnessed low transmission with the evolution of diverse variants. Seropositivity increased during the study period with over half of the individuals carrying neutralizing antibodies against SARS-CoV-2. High infection and seroprevalence in NE India during the second wave were associated with the dominant emergence of variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Seroepidemiologic Studies , SARS-CoV-2/genetics , COVID-19/epidemiology , Genomics , India/epidemiology , Antibodies, Neutralizing
9.
Mol Divers ; 27(3): 1459-1468, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35925528

ABSTRACT

A fragment-based drug discovery (FBDD) approach has traditionally been of utmost significance in drug design studies. It allows the exploration of large chemical space to find novel scaffolds and chemotypes which can be improved into selective inhibitors with good affinity. In the current work, several public domain chemical libraries (ChEMBL, DrugCentral, PDB ligands, COCONUT, and SAVI) comprising bioactive and virtual molecules were retrieved to develop a fragment library. A systematic fragmentation method that breaks a given molecule into rings, linkers, and substituents was used to cleave the molecules and the fragments were analyzed. Further, only the ring framework was taken into the consideration to develop a fragment library that consists of a total number of 107,614 unique fragments. This set represents a rich diverse structure framework that covers a wide variety of yet-to-be-explored fragments for a wide range of small molecule-based applications. This fragment library is an integral part of the molecular property diagnostic suite (MPDS) suite that can be used with other modeling and informatics methods for FBDD approaches. The fragment library module of MPDS can be accessed at http://mpds.neist.res.in:8085 .


Subject(s)
Drug Design , Drug Discovery , Drug Discovery/methods , Small Molecule Libraries/chemistry
10.
J Chem Sci (Bangalore) ; 134(2): 57, 2022.
Article in English | MEDLINE | ID: mdl-35498548

ABSTRACT

Exploring the new therapeutic indications of known drugs for treating COVID-19, popularly known as drug repurposing, is emerging as a pragmatic approach especially owing to the mounting pressure to control the pandemic. Targeting multiple targets with a single drug by employing drug repurposing known as the polypharmacology approach may be an optimised strategy for the development of effective therapeutics. In this study, virtual screening has been carried out on seven popular SARS-CoV-2 targets (3CLpro, PLpro, RdRp (NSP12), NSP13, NSP14, NSP15, and NSP16). A total of 4015 approved drugs were screened against these targets. Four drugs namely venetoclax, tirilazad, acetyldigitoxin, and ledipasvir have been selected based on the docking score, ability to interact with four or more targets and having a reasonably good number of interactions with key residues in the targets. The MD simulations and MM-PBSA studies showed reasonable stability of protein-drug complexes and sustainability of key interactions between the drugs with their respective targets throughout the course of MD simulations. The identified four drug molecules were also compared with the known drugs namely elbasvir and nafamostat. While the study has provided a detailed account of the chosen protein-drug complexes, it has explored the nature of seven important targets of SARS-CoV-2 by evaluating the protein-drug complexation process in great detail. Graphical abstract: Drug repurposing strategy against SARS-CoV2 drug targets. Computational analysis was performed to identify repurposable approved drug candidates against SARS-CoV2 using approaches such as virtual screening, molecular dynamics simulation and MM-PBSA calculations. Four drugs namely venetoclax, tirilazad, acetyldigitoxin, and ledipasvir have been selected as potential candidates. Supplementary Information: The online version contains supplementary material available at 10.1007/s12039-022-02046-0.

11.
Mol Divers ; 26(3): 1675-1695, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34468898

ABSTRACT

Development of potential antitubercular molecules is a challenging task due to the rapidly emerging drug-resistant strains of Mycobacterium tuberculosis (M.tb). Structure-based approaches hold greater benefit in identifying compounds/drugs with desired polypharmacological profiles. These methods can be employed based on the knowledge of protein binding sites to identify the complementary ligands. In this study, polypharmacology guided computational drug repurposing approach was applied to identify potential antitubercular drugs. 20 important druggable protein targets in M.tb were considered from the target library of Molecular Property Diagnostic Suite-Tuberculosis (MPDSTB- http://mpds.neist.res.in:8084 ) for virtual screening. FDA approved drugs were collected, preprocessed and docked in the active sites of the 20 M.tb targets. The top 300 drug molecules from each target (20 × 300) were filtered-in and subsequently screened for possible antitubercular and antimycobacterial activity using PASS tool. Using this approach, 34 drugs with predicted antitubercular and anti-mycobacterial activity were identified along with good binding affinity against multiple M.tb targets. Interestingly, 21 out of the 34 identified drugs are antibiotics while 4 drug molecules (nitrofural, stavudine, quinine and quinidine) are non-antibiotics showing promising predicted antitubercular activity. Most of these molecules have the similar privileged antimycobacterial drugs scaffold. Further drug likeness properties were calculated to get deeper insights to M.tb lead molecules. Interestingly, it was also observed that the drugs identified from the study are under different stages of drug discovery (i.e., in vitro, clinical trials) for the effective treatment of various diseases including cancer, degenerative diseases, dengue virus infection, tuberculosis, etc. Krasavin et al., 2017 synthesized nitrofuran analogues with appreciable MICs (22-23 µM) against M.tb H37Rv. These experiments further add to the credibility of the drugs identified in this study (TB).


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/chemistry , Drug Repositioning , Humans , Polypharmacology , Tuberculosis/drug therapy
12.
Comput Biol Med ; 138: 104856, 2021 11.
Article in English | MEDLINE | ID: mdl-34555571

ABSTRACT

Machine learning and data-driven approaches are currently being widely used in drug discovery and development due to their potential advantages in decision-making based on the data leveraged from existing sources. Applying these approaches to drug repurposing (DR) studies can identify new relationships between drug molecules, therapeutic targets and diseases that will eventually help in generating new insights for developing novel therapeutics. In the current study, a dataset of 1671 approved drugs is analyzed using a combined approach involving unsupervised Machine Learning (ML) techniques (Principal Component Analysis (PCA) followed by k-means clustering) and Structure-Activity Relationships (SAR) predictions for DR. PCA is applied on all the two dimensional (2D) molecular descriptors of the dataset and the first five Principal Components (PC) were subsequently used to cluster the drugs into nine well separated clusters using k-means algorithm. We further predicted the biological activities for the drug-dataset using the PASS (Predicted Activities Spectra of Substances) tool. These predicted activity values are analyzed systematically to identify repurposable drugs for various diseases. Clustering patterns obtained from k-means showed that every cluster contains subgroups of structurally similar drugs that may or may not have similar therapeutic indications. We hypothesized that such structurally similar but therapeutically different drugs can be repurposed for the native indications of other drugs of the same cluster based on their high predicted biological activities obtained from PASS analysis. In line with this, we identified 66 drugs from the nine clusters which are structurally similar but have different therapeutic uses and can therefore be repurposed for one or more native indications of other drugs of the same cluster. Some of these drugs not only share a common substructure but also bind to the same target and may have a similar mechanism of action, further supporting our hypothesis. Furthermore, based on the analysis of predicted biological activities, we identified 1423 drugs that can be repurposed for 366 new indications against several diseases. In this study, an integrated approach of unsupervised ML and SAR analysis have been used to identify new indications for approved drugs and the study provides novel insights into clustering patterns generated through descriptor level analysis of approved drugs.


Subject(s)
Drug Repositioning , Pharmaceutical Preparations , Cluster Analysis , Machine Learning , Unsupervised Machine Learning
13.
ACS Omega ; 6(27): 17472-17482, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34278133

ABSTRACT

The drug-resistant strains of Mycobacterium tuberculosis (M.tb) are evolving at an alarming rate, and this indicates the urgent need for the development of novel antitubercular drugs. However, genetic mutations, complex cell wall system of M.tb, and influx-efflux transporter systems are the major permeability barriers that significantly affect the M.tb drugs activity. Thus, most of the small molecules are ineffective to arrest the M.tb cell growth, even though they are effective at the cellular level. To address the permeability issue, different machine learning models that effectively distinguish permeable and impermeable compounds were developed. The enzyme-based (IC50) and cell-based (minimal inhibitory concentration) data were considered for the classification of M.tb permeable and impermeable compounds. It was assumed that the compounds that have high activity in both enzyme-based and cell-based assays possess the required M.tb cell wall permeability. The XGBoost model was outperformed when compared to the other models generated from different algorithms such as random forest, support vector machine, and naïve Bayes. The XGBoost model was further validated using the validation data set (21 permeable and 19 impermeable compounds). The obtained machine learning models suggested that various descriptors such as molecular weight, atom type, electrotopological state, hydrogen bond donor/acceptor counts, and extended topochemical atoms of molecules are the major determining factors for both M.tb cell permeability and inhibitory activity. Furthermore, potential antimycobacterial drugs were identified using computational drug repurposing. All the approved drugs from DrugBank were collected and screened using the developed permeability model. The screened compounds were given as input in the PASS server for the identification of possible antimycobacterial compounds. The drugs that were retained after two filters were docked to the active site of 10 different potential antimycobacterial drug targets. The results obtained from this study may improve the understanding of M.tb permeability and activity that may aid in the development of novel antimycobacterial drugs.

14.
Exp Biol Med (Maywood) ; 246(14): 1660-1667, 2021 07.
Article in English | MEDLINE | ID: mdl-33779341

ABSTRACT

Activating anabolic receptor-mediated signaling is essential for stimulating new bone formation and for promoting bone healing in humans. Fibroblast growth factor receptor (FGFR) 3 is reported to be an important positive regulator of osteogenesis. Presently, recombinant proteins are used to stimulate FGFR3 function but have limitations for therapy due to expense and stability. Therefore, there is a need for identification of novel small molecules binding to FGFR3 that promote biological function. In silico molecular docking and high-throughput virtual screening on zinc database identified seven compounds predicted to bind to an active site within the ßC'-ßE loop, specific to FGFR3. All seven compounds fall within an acceptable range of ADME/T properties. Four compounds showed a 30-65% oral absorption rate. Density functional theory analysis revealed a high HOMO-LUMO gap, reflecting high molecular stability for compounds 14977614 and 13509082. Five compounds exhibited mutagenicity, while the other three compounds presented irritability. Computational mutagenesis predicted that mutating G322 affected compound binding to FGFR3. Molecular dynamics simulation revealed compound 14977614 is stable in binding to FGFR3. Furthermore, compound 14977614, with an oral absorption rate of 60% and high molecular stability, produced significant increases in both proliferation and differentiation of bone marrow stromal cells in vitro. Anti-FGFR3 treatment completely blocked the stimulatory effect of 14977614 on BMSC proliferation. Ex vivo treatment of mouse calvaria in organ culture for seven days with 14977614 increased mineralization and expression levels of bone formation markers. In conclusion, computational analyses identified seven compounds that bind to the FGFR3, and in vitro studies showed that compound 14977614 exerts significant biological effects on osteogenic cells.


Subject(s)
Molecular Docking Simulation , Osteoblasts/drug effects , Receptor, Fibroblast Growth Factor, Type 3/chemistry , Small Molecule Libraries/chemistry , Animals , Binding Sites , Cells, Cultured , Drug Discovery , Mice , Mice, Inbred C57BL , Protein Binding , Quantitative Structure-Activity Relationship , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Small Molecule Libraries/pharmacology
15.
PLoS One ; 13(10): e0203194, 2018.
Article in English | MEDLINE | ID: mdl-30286109

ABSTRACT

The level of the vitamin D in the bloodstream is regulated by cytochrome P450 enzyme 24-hydroxylase A1 (CYP24A1). Over expression of CYP24A1 enzyme is correlated with vitamin D deficiency and resistance to vitamin D therapy. Chronic kidney disease (CKD) patients are commonly reported with the above said expression variations. This deregulation could be solved by ligands that act as a vitamin D receptor (VDR) agonists and CYP24A1 antagonists. Posner et al., (2010) first time reported two new vitamin D analogues namely CTA-091 and CTA-018 to inhibit CYP24A1. The CTA-018 inhibited CYP24A1 with an IC50 27 ± 6 nM (10 times more potent than the ketoconazole (253 ± 20 nM)). CTA-018 induced VDR expression (15-fold lower than 1α,25(OH)2D3) and is under phase II clinical trial, whereas CTA-091 was not able to efficiently induce the VDR expression (>2000 nM). To explore the molecular mechanism, binding specificity of these two vitamin D analogues along with native ligand was extensively studied through in silico approaches. Through molecular dynamics simulations studies, we shown that the sulfonic group (O = S = O) in the side chain of CTA-018 plays an important role in the regulation of VDR agonistic activity. The electron lone pairs of the sulfonic group that interacted with His393 lead to be a factor for agonistic mechanism of VDR activity. Compared to azol-based compounds, CTA-018 binds the different sites in the CYP24A1 binding cavity and thus it could be a potent antagonistic for CYP24A1enzyme.


Subject(s)
Receptors, Calcitriol/chemistry , Renal Insufficiency, Chronic/drug therapy , Vitamin D Deficiency/drug therapy , Vitamin D3 24-Hydroxylase/chemistry , Vitamin D/chemistry , Humans , Hydrogen Bonding , Ketoconazole/administration & dosage , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Conformation , Receptors, Calcitriol/agonists , Receptors, Calcitriol/genetics , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/genetics , Vitamin D/analogs & derivatives , Vitamin D Deficiency/blood , Vitamin D Deficiency/genetics , Vitamin D3 24-Hydroxylase/antagonists & inhibitors , Vitamin D3 24-Hydroxylase/genetics
16.
J Biomed Inform ; 85: 114-125, 2018 09.
Article in English | MEDLINE | ID: mdl-30092360

ABSTRACT

Molecular Property Diagnostic Suite - Diabetes Mellitus (MPDSDM) is a Galaxy-based, open source disease-specific web portal for diabetes. It consists of three modules namely (i) data library (ii) data processing and (iii) data analysis tools. The data library (target library and literature) module provide extensive and curated information about the genes involved in type 1 and type 2 diabetes onset and progression stage (available at http://www.mpds-diabetes.in). The database also contains information on drug targets, biomarkers, therapeutics and associated genes specific to type 1, and type 2 diabetes. A unique MPDS identification number has been assigned for each gene involved in diabetes mellitus and the corresponding card contains chromosomal data, gene information, protein UniProt ID, functional domains, druggability and related pathway information. One of the objectives of the web portal is to have an open source data repository that contains all information on diabetes and use this information for developing therapeutics to cure diabetes. We also make an attempt for computational drug repurposing for the validated diabetes targets. We performed virtual screening of 1455 FDA approved drugs on selected 20 type 1 and type 2 diabetes proteins using docking protocol and their biological activity was predicted using "PASS Online" server (http://www.way2drug.com/passonline) towards anti-diabetic activity, resulted in the identification of 41 drug molecules. Five drug molecules (which are earlier known for anti-malarial/microbial, anti-viral, anti-cancer, anti-pulmonary activities) were proposed to have a better repurposing potential for type 2 anti-diabetic activity and good binding affinity towards type 2 diabetes target proteins.


Subject(s)
Diabetes Mellitus/drug therapy , Diabetes Mellitus/genetics , Drug Discovery , Drug Repositioning , Computational Biology , Diabetes Mellitus/diagnosis , Drug Discovery/statistics & numerical data , Drug Evaluation, Preclinical , Drug Repositioning/statistics & numerical data , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Internet , Molecular Diagnostic Techniques/statistics & numerical data , Molecular Docking Simulation , User-Computer Interface
17.
Comb Chem High Throughput Screen ; 21(5): 329-343, 2018.
Article in English | MEDLINE | ID: mdl-29874993

ABSTRACT

AIM AND OBJECTIVE: Vitamin D3 (1,25(OH)2D3) is a biologically active metabolite and plays a wide variety of regulatory functions in human systems. Currently, several Vitamin D analogues have been synthesized and tested against VDR (Vitamin D Receptor). Electrostatic potential methods are greatly influence the structure-based drug discovery. In this study, ab inito (DFT, HF, LMP2) and semi-empirical (RM1, AM1, PM3, MNDO, MNDO/d) charges were examined on the basis of their concert in predicting the docking pose using Induced Fit Docking (IFD) and binding free energy calculations against the VDR. MATERIALS AND METHODS: Initially, we applied ab initio and semi-empirical charges to the 38 vitamin D analogues. Further, the charged analogues have been docked in the VDR active site. We generated the structure-based 3D-QSAR from the docked conformation of vitamin D analogues. On the other hand, we performed pharmacophore-based 3D-QSAR. RESULTS: The result shows that, AM1 is the good charge model for our study and AM1 charge based QSAR produced more accurate ligand poses. Furthermore, the hydroxyl group in the side chain of vitamin D analogues played an important role in the VDR antagonistic activity. CONCLUSION: Overall, we found that charge-based optimizations of ligands were out performed than the pharmacophore based QSAR model.


Subject(s)
Molecular Docking Simulation/methods , Receptors, Calcitriol/chemistry , Vitamin D/chemistry , Binding Sites , Databases, Protein , Drug Design , Ligands , Molecular Conformation , Protein Binding , Quantitative Structure-Activity Relationship , Static Electricity , Thermodynamics , Vitamin D/analogs & derivatives
18.
J Mol Graph Model ; 81: 14-24, 2018 05.
Article in English | MEDLINE | ID: mdl-29476931

ABSTRACT

Pharmacogenetics and pharmacogenomics have become presumptive with advancements in next-generation sequencing technology. In complex diseases, distinguishing the feasibility of pathogenic and neutral disease-causing variants is a time consuming and expensive process. Recent drug research and development processes mainly rely on the relationship between the genotype and phenotype through Single nucleotide polymorphisms (SNPs). The SNPs play an indispensable role in elucidating the individual's vulnerability to disease and drug response. The understanding of the interplay between these leads to the establishment of personalized medicine. In order to address this issue, we developed a computational pipeline of vitamin D receptor (VDR) for SNP centered study by application of elegant molecular docking and molecular dynamics simulation approaches. In a few SNPs the volume of the binding cavities has increased in mutant structures when compared to the wild type, indicating a weakening in interaction (699.1 Å3 in wild type Vs. 738.8 in Leu230Val, 820.7 Å3 in Arg247Leu). This also differently reflected in the H-bond interactions and binding free energies -169.93 kcal/mol (wild type) Vs -156.43 kcal/mol (R154W), -105.49 kcal/mol (R274L) in Leu230Val and Arg247Leu respectively. Although we could not find noteworthy changes in the binding free energies and binding pocket in the remaining mutations, the H-bond interactions made these SNPs deleterious. Thus, we further analyzed the H-bond interactions and distances using molecular dynamics (MD) simulation studies.


Subject(s)
Calcitriol/chemistry , Polymorphism, Single Nucleotide , Receptors, Calcitriol/chemistry , Receptors, Calcitriol/genetics , Amino Acid Sequence , Binding Sites , Humans , Ligands , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Protein Binding , Structure-Activity Relationship
19.
Pharm Res ; 34(7): 1444-1458, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28432535

ABSTRACT

PURPOSE: Over expression of ATP-binding cassette transporters is considered one of the major reasons for non-responsiveness to antiepileptic drugs. Carbamazepine (CBZ), one of first line antiepileptic drug is known to influence ABCC2 expression but its exact molecular mechanism is unknown. METHODS: We investigated the effect of CBZ on expression of ABCC2 and pregnane X receptor (PXR) in HepG2 cell line and compared with hyperforin (agonist of PXR) and ketoconazole (antagonist of PXR) through realtime PCR and western blot assay. Involvement of PXR was demonstrated through nuclear translocation and RNA interference and related effect of CBZ on ABCC2 through functional activity assay. Molecular docking and dynamic simulation approach was used to understand the interaction of CBZ with PXR. RESULTS: CBZ and hyperforin increased the PXR and ABCC2 expression whereas reversed when present it in combination with ketoconazole. Experiments confirmed CBZ induced ABCC2 expression is PXR dependent. Molecular dynamic (MD) simulation and in vitro experiment indicated possibility of CBZ to be PXR agonist and PXR residue Gln285 to be important for CBZ-PXR interaction. CONCLUSIONS: CBZ alters the functional activity of ABCC2 through PXR, which in turn can interfere with therapy. Mutational analysis of residues revealed the importance of Gln285 in ligand interaction.


Subject(s)
Anticonvulsants/chemistry , Carbamazepine/chemistry , Multidrug Resistance-Associated Proteins/chemistry , Receptors, Steroid/chemistry , Active Transport, Cell Nucleus , Anticonvulsants/metabolism , Anticonvulsants/pharmacology , Binding, Competitive , Carbamazepine/pharmacology , Cell Nucleus/metabolism , Computer Simulation , Hep G2 Cells , Humans , Ketoconazole/chemistry , Ketoconazole/pharmacology , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/metabolism , Mutation , Phloroglucinol/analogs & derivatives , Phloroglucinol/chemistry , Phloroglucinol/pharmacology , Pregnane X Receptor , Protein Binding , RNA Interference , Receptors, Steroid/agonists , Receptors, Steroid/antagonists & inhibitors , Receptors, Steroid/genetics , Terpenes/chemistry , Terpenes/pharmacology
20.
Meta Gene ; 9: 26-36, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27114920

ABSTRACT

FGF23, CYP24A1 and VDR altogether play a significant role in genetic susceptibility to chronic kidney disease (CKD). Identification of possible causative mutations may serve as therapeutic targets and diagnostic markers for CKD. Thus, we adopted both sequence and sequence-structure based SNP analysis algorithm in order to overcome the limitations of both methods. We explore the functional significance towards the prediction of risky SNPs associated with CKD. We assessed the performance of four widely used pathogenicity prediction methods. We compared the performances of the programs using Mathews correlation Coefficient ranged from poor (MCC = 0.39) to reasonably good (MCC = 0.42). However, we got the best results for the combined sequence and structure based analysis method (MCC = 0.45). 4 SNPs from FGF23 gene, 8 SNPs from VDR gene and 13 SNPs from CYP24A1 gene were predicted to be the causative agents for human diseases. This study will be helpful in selecting potential SNPs for experimental study from the SNP pool and also will reduce the cost for identification of potential SNPs as a genetic marker.

SELECTION OF CITATIONS
SEARCH DETAIL
...