Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 452(4): 873-80, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25157808

ABSTRACT

Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/ß1-6Galß1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galß1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria.


Subject(s)
Ethers/chemistry , Galactolipids/chemistry , Phytol/chemistry , Plant Extracts/chemistry , Ulva/chemistry , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/isolation & purification , Ethers/isolation & purification , Galactolipids/isolation & purification , Phytol/isolation & purification , Plant Extracts/isolation & purification , Species Specificity , Ulva/classification
2.
Glycobiology ; 19(7): 797-807, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19389917

ABSTRACT

Although 6-gala series glycosphingolipids possessing R-Gal (alpha/beta) 1-6Gal beta 1-1'Cer have been found in some mollusks, pathogenic parasites, and fungi, their physiological functions and metabolic pathway are not fully understood. We described a novel method of detecting 6-gala series glyco- sphingolipids utilizing the specificity of endogalactosylceramidase (EGALC), which is capable of hydrolyzing 6-gala series glycosphingolipids to produce intact oligosaccharides and ceramides. EGALC catalyzes not only hydrolysis but also a transglycosylation reaction. In the latter reaction, EGALC transfers oligosaccharides from the glycosphingolipids to acceptors such as fluorescent 1-alkanols. Based on the transglycosylation reaction of EGALC, a specific, easy, fast, sensitive, and reproducible method of detecting 6-gala series glycosphingolipids was developed using NBD-pentanol as an acceptor. The fluorescent products, NBD-pentanol-conjugated 6-gala oligosaccharides, were separated and detected by TLC or HPLC with a fluorescent detector. Moreover, it was revealed that as well as glycosphingolipids, a glycoglycerolipid, digalactosyldiacylglycerol, was utilized by EGALC as a donor substrate. This method was successfully applied to detect 6-gala series glycosphingolipids in a fungus, Rhizopus oryzae, and a parasite, Taenia crassiceps. The method would be useful for studying glycosphingolipids and galactosyl glycerolipids which share the Gal (alpha/beta) 1-6Gal structure.


Subject(s)
Fluorescence , Fluorescent Dyes/chemistry , Glycoside Hydrolases/metabolism , Glycosphingolipids/analysis , Glycosphingolipids/chemistry , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Glycosphingolipids/chemical synthesis , Glycosylation , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...