Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 9(32): 6614-6621, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30310593

ABSTRACT

The synergistic action of properly integrated semiconducting materials can bring about sophisticated electronic processes and functions. However, it is often a great challenge to achieve optimal performance in organic devices because of the limited control over the distribution of different materials in active layers. Here, we employ a unique photoreaction-based layer-by-layer solution process for preparing ternary organic photovoltaic layers. This process is applicable to a variety of compounds from wide-band-gap small molecules to narrow-band-gap π-extended systems, and enables the preparation of multicomponent organic semiconducting thin films having the right compound at the right place. The resulting ternary photovoltaic devices afford high internal quantum efficiencies, leading to an approximately two times higher power-conversion efficiency as compared to the corresponding binary bulk-heterojunction system. This work opens up new possibilities in designing materials and active layers for solution-processed organic electronic devices.

2.
Chemistry ; 22(33): 11574-7, 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27321480

ABSTRACT

A demethylative direct borylation is reported, which was applied to the synthesis of benzo[fg]tetracenes containing boronate ester, amide, and thioester substructures. Depending on the heteroatom adjacent to boron, the molecules showed characteristic photophysical properties, molecular arrangements, and chemical stabilities. The key to the successful synthesis is the appropriate choice of the boron source and Brønsted base. The versatility of the direct borylation was demonstrated by the synthesis of a boronate-based benzo[hi]hexacene.

SELECTION OF CITATIONS
SEARCH DETAIL
...