Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Bioelectrochemistry ; 160: 108779, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003947

ABSTRACT

Non-electroactive bacteria (n-EAB), constituting the majority of known bacteria to date, have been underutilized in electrochemical conversion technologies due to their lack of direct electron transfer to electrodes. In this study, we established an electric wiring between n-EAB (gram-positive Bacillus subtilis and gram-negative Escherichia coli) and an extracellular electrode via a ferrocene-polyethyleneimine-based redox polymer (Fc-PEI). Chronoamperometry recordings indicated that Fc-PEI can transfer intracellular electrons to the extracellular electrode regardless of the molecular organization of PEI (linear or branched) and the membrane structure of bacteria (gram-positive or -negative). As fluorescence staining suggested, Fc-PEI improves the permeability of the bacterial cell membrane, enabling electron carriers in the cell to react with Fc. In addition, experiments with Fc-immobilized electrodes without PEI suggested the existence of an alternative electron transfer pathway from B. subtilis to the extracellular Fc adsorbed onto the cell membrane. Furthermore, we proposed for the first time that the bacteria/Fc-linear PEI modified structure enables selective measurement of immobilized bacterial activity by physically blocking contact between the electrode surface and planktonic cells co-existing in the surrounding media. Such electrodes can be a powerful analytical tool for elucidating the metabolic activities of specific bacteria wired to the electrode even within complex bacterial communities.

2.
Anal Biochem ; 692: 115575, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38796117

ABSTRACT

This study demonstrates, for the first time, the proof-of-concept of a novel immunosensor, a touchpad-based immunochromatographic strip, that non-invasively extracts and detects skin surface proteins. The strip was composed of a nitrocellulose membrane at the center, where a spot of anti-human IgG capture antibody was physically adsorbed. The capture antibody spot was covered with a glass fiber membrane impregnated with phosphate-buffered saline (PBS) to extract skin surface proteins, avoiding direct contact of the human skin with the capture antibodies. Skin surface IgG was detected in two steps: (1) touching the capture antibody via a glass fiber membrane containing PBS, and (2) dipping the strip into the Au-nanoparticle-labeled secondary antibody to visualize the existence of the captured skin surface IgG on the strip. We qualitatively demonstrated that using a very small amount of PBS while maintaining contact with the skin, skin surface proteins can be concentrated and detected, even with a relatively low-sensitivity immunochromatographic chip. This sensor is expected to be a potential biosensor for the non-invasive diagnosis of the integrity of human skin.


Subject(s)
Chromatography, Affinity , Skin , Humans , Skin/chemistry , Chromatography, Affinity/methods , Gold/chemistry , Membrane Proteins/analysis , Membrane Proteins/immunology , Immunoglobulin G/analysis , Immunoglobulin G/immunology , Metal Nanoparticles/chemistry , Collodion/chemistry , Biosensing Techniques/methods
3.
Anal Sci ; 40(4): 579-580, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38523221
4.
Anal Bioanal Chem ; 416(7): 1635-1645, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38294529

ABSTRACT

This study demonstrated for the first time that skin surface pH can be monitored in real-time, using a screen-printed wearable pH sensor, to evaluate the buffering capacity of the human skin. The screen-printed pH sensor was composed of a polyaniline-based pH-sensitive electrode and a nitrocellulose membrane-based liquid junction type of Ag/AgCl reference electrode. This sensor showed a reliable and reversible potentiometric response to pH with long-term potential stability. Intermittent monitoring of the buffering capacity of skin surface pH demonstrated the reliability of the proposed wearable pH sensor, which was comparable to that of a commercially available flat-tip pH sensor. We found that contact of the wearable pH sensor with the subject's skin via aqueous electrolyte solutions was necessary for the sensor to continuously monitor the skin surface pH while sustaining the natural buffer capacity of the human skin surface.


Subject(s)
Wearable Electronic Devices , Humans , Reproducibility of Results , Skin , Electrodes , Hydrogen-Ion Concentration
5.
Bioelectrochemistry ; 149: 108290, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36274519

ABSTRACT

This paper proposes a minimally invasive current-controlled electric stimulation system based on a poly(3,4-ethylenedioxythiophene) (PEDOT)-modified electrode to characterize the dynamics of the membrane potential in Bacillus subtilis. A highly capacitive PEDOT-modified electrode enabled the injection of a large ionic charge to the surface of the cells suppressing cytotoxic pH change in the vicinity of the electrode. The current pulse induced a hyperpolarization response in B. subtilis around the electrode. Using quantitative charge injection through current-controlled electrical stimulation, the threshold charge density to excite B. subtilis was roughly estimated to be 530.8 µC cm-2 (of electrode surface area) for the first time. Our results provide the minimum electrical stimulation conditions necessary to minimal invasively control the bacterial membrane potential.


Subject(s)
Bacteria , Polymers , Polymers/chemistry , Electric Stimulation , Electrodes
6.
Sci Rep ; 12(1): 13598, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35948743

ABSTRACT

This paper reports a new hydrogel extraction technique for detecting blue fluorescent substances in plant leaves. These blue fluorescent substances were extracted by placing a hydrogel film on the leaf of a cherry tomato plant infected with Ralstonia solanacearum; herein, chlorogenic acid was confirmed to be a blue fluorescent substance. The wavelength at the maximum fluorescence intensity of the film after the hydrogel extraction was similar to that of the methanolic extract obtained from the infected cherry tomato leaves. Chlorophyll was not extracted from the hydrogel film because no fluorescence peak was observed at 680 nm. Accordingly, the blue fluorescence of the substances extracted from the hydrogel film was not quenched by the strong absorption of chlorophyll in the blue light region. This hydrogel extraction technique can potentially detect small amounts of blue fluorescent substances and the changes in its amount within the leaves of infected plants. These changes in the amount of blue fluorescent substances in the early stages of infection can be used to detect presymptomatic infections. Therefore, hydrogel extraction is a promising technique for the noninvasive detection of infections before onset.


Subject(s)
Hydrogels , Solanum lycopersicum , Chlorophyll , Plant Leaves , Plants , Spectrometry, Fluorescence
7.
Anal Sci ; 38(7): 963-968, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35578012

ABSTRACT

This is the first report of conducting proof-of-concept study for amperometric acetyltransferase-based L-carnitine sensor by employing the thiol/disulfide exchange reaction. The carnitine acetyltransferase (CrAT) catalyzes the reaction between acetyl-CoA and L-carnitine to produce CoA which is difficult to detect directly by electrochemical methods owing to steric hindrance and electrostatic effect of CoA. The thiol/disulfide exchange reaction between CoA and cystamine was mediated in the enzymatic reaction to produce electrochemically detectable low molecular weight of cationic cysteamine. The sensor exhibited high sensitivity and selectivity for L-carnitine in the concentration range 0.28-50 µM with a limit of detection of 0.28 µM. This is a promising strategy for L-carnitine sensing in point-of-care testing applications.


Subject(s)
Biosensing Techniques , Carnitine , Acetyl Coenzyme A , Disulfides , Sulfhydryl Compounds
8.
Anal Bioanal Chem ; 413(7): 1883-1891, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33479820

ABSTRACT

This is the first report demonstrating proof of concept for the passive, non-invasive extraction and in situ potentiometric detection of human sweat chloride ions (Cl- ions) using a stable printed planar liquid-junction reference electrode-integrated hydrogel-based touch-sensor pad without activities such as exercise to induce perspiration, environmental temperature control, or requiring cholinergic drug administration. The sensor pad was composed entirely of a screen-printed bare Ag/AgCl-based chloride ion-selective electrode and a planar liquid-junction Ag/AgCl reference electrode, which were fully covered by an agarose hydrogel in phosphate-buffered saline (PBS). When human skin contacted the hydrogel pad, sweat Cl- ions were continuously extracted into the gel, followed by in situ potentiometric detection. The planar liquid-junction Ag/AgCl reference electrode had a polymer-based KCl-saturated inner electrolyte layer to stabilize the potential of the Ag/AgCl electrode even with a substantial change in the chloride ion concentration in the hydrogel pad. We expect this fully screen-printed sensor to achieve the low-cost passive and non-invasive daily monitoring of human Cl- ions in sweat in the future.


Subject(s)
Cholinergic Agents/pharmacology , Electrolytes , Hydrogels/chemistry , Ions , Polymers/chemistry , Potentiometry/instrumentation , Biosensing Techniques , Chlorides/chemistry , Electrochemistry , Electrodes , Equipment Design , Humans , Ion-Selective Electrodes , Potentiometry/methods , Sepharose/chemistry , Skin/drug effects , Sweat , Temperature
9.
Sci Rep ; 11(1): 36, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33420083

ABSTRACT

This report is the first on heat-assisted transferable battery components, enabling manufacturing batteries on non-planer surfaces such as a curved surface and an edge. The transferrable battery components were composed of two layers: a cathode or an anode and a conductive heal-melt adhesive layer on a silicone-based flexible supporting paper. These mechanically-durable, flexible components enabled conformable adhesion even on curved surfaces and substrate edges. As a model battery, the manganese dioxide-zinc system was constructed on a curved surface using transfer techniques and showed a practical capacity of 1.8 mAh cm-2 per unit electrode area. These transferable electrodes allow arbitrary design of batteries according to the power consumption of IoT devices to be fabricated on unreported geometries where has been considered as a dead space.

10.
ACS Omega ; 5(50): 32844-32851, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33376922

ABSTRACT

The application of a multienzyme cascade reaction in electrochemical biosensors has the advantage of expanding the target substrates in addition to selectivity combining multiple enzymes on an electrode. However, the multienzyme system has the drawback of inefficient substance conversion because of the time-consuming passing of intermediates between the enzymes and/or diffusional loss of the intermediates. In this study, the optimal construction of a multienzymatic film in an ammonia detection sensor was investigated using a cascade reaction of l-glutamate oxidase and l-glutamate dehydrogenase as a model sensor. Three enzymatic films were prepared: (1) a mixed film designed to have a short diffusional distance between closely located enzymes, (2) a normal-sequential layered film arranged for the correct reaction pathway, and (3) a reverse-sequential layered film as a negative control. This was followed by comparison of the conversion efficiency of ammonia to hydrogen peroxide using time-dependent potentiometric measurements of a Prussian blue electrode determining the hydrogen peroxide amount. The results indicate that the conversion efficiency of the normal-sequential layered film was the highest among the three enzymatic films. The quantitative evaluation of the intermediate conversion efficiency of the cascade reaction showed that compared to the mixed film (34%), a higher conversion efficiency of 92% was obtained in the first enzymatic reaction step. These findings will promote the use of multienzymatic cascade reaction systems not only in biosensors and bioreactors but also in various industrial fields.

11.
Biomed Microdevices ; 22(3): 49, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32719998

ABSTRACT

Culturing cell spheroids in microchamber arrays is a widely used method in regenerative medicine and drug discovery while it requires laborious procedures during medium exchange and drug administration. Here, we report a simple method for the medium exchange and drug testing using a hydrogel-based sealed microchamber arrays. Owing to the high molecular permeability of poly(vinyl alcohol) hydrogel, the sealed microchamber allows nutrients and drugs in outer medium to pass through. Thus, automatic medium exchange and drug testing for all the cell spheroids inside the microchamber arrays are achieved by simply transferring the microchamber from old medium to fresh medium. Cell spheroids of human induced pluripotent stem cell-derived cardiomyocytes were cultured inside the sealed microchambers, and it was confirmed that the spheroids were stably positioned inside the microchamber even after transferring 10 times. The cell spheroids showed high viability after culturing for 7 days in the sealed microchamber with the transfer-based medium exchange, which allowed cardiac maturation by simultaneous electrical stimulation. Isoproterenol, a model cardiac drug, was administrated from outside the sealed microchamber to demonstrate the feasibility of drug testing by the rapid transfer method.


Subject(s)
Drug Evaluation, Preclinical/instrumentation , Hydrogels/chemistry , Microtechnology/instrumentation , Spheroids, Cellular/drug effects , Heart/drug effects , Isoproterenol/pharmacology , Permeability , Polyvinyl Alcohol/chemistry , Time Factors
12.
Anal Sci ; 36(3): 291-302, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-31904007

ABSTRACT

This review describes recent advances in biosensors for non-invasive human healthcare applications, especially focusing on sweat analysis, along with approaches for fabricating these biosensors based on printed electronics technology. Human sweat contains various kinds of biomarkers. The relationship between a trace amount of sweat biomarkers partially partitioned from blood and diseases has been investigated by omic analysis. Recent progress in wearable or portable biosensors has enabled periodic or continuous monitoring of some sweat biomarkers while supporting the results of the omic analysis. In this review, we particularly focused on a transistor-based biosensor that is highly sensitive in quantitatively detecting the low level of sweat biomarkers. Furthermore, we showed a new approach of flexible hybrid electronics that has been applied to advanced sweat biosensors to realize fully integrated biosensing systems wirelessly connected to a networked IoT system. These technologies are based on uniquely advanced printing techniques that will facilitate mass fabrication of high-performance biosensors at low cost for future smart healthcare.


Subject(s)
Biosensing Techniques , Printing, Three-Dimensional , Sweat , Humans , Organic Chemicals
13.
Sci Rep ; 9(1): 10102, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31300711

ABSTRACT

This study is the first report demonstrating proof-of-concept for a hydrogel-based touch sensor pad used for the non-invasive extraction and detection of sweat components. The sensor device was composed of an electrochemical L-lactate biosensor covered with an agarose gel in a phosphate buffer saline. When human skin contacts the agarose gel, L-lactate in sweat was continuously extracted into the gel, followed by in-situ potentiometric detection without controlled conditions. This novel type of sweat sensor is expected to enable the simple, non-invasive daily periodic monitoring of sweat biomarkers for advanced personal healthcare methods in the future.

14.
Macromol Biosci ; 19(6): e1900060, 2019 06.
Article in English | MEDLINE | ID: mdl-31038841

ABSTRACT

A hydrogel-based microchamber with organic electrodes for efficient electrical stimulations of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is described. The microchamber is made from molecularly permeable, optically transparent, and electrically conductive polyvinyl alcohol (PVA) hydrogel and highly capacitive carbon electrode modified with poly(3,4-ethylenedioxythiophene) (PEDOT). Spheroids of hiPSC-CMs are cultured in microchambers, and electrically stimulated by the electrode for maturation. The large interfacial capacitance of the electrodes enables several days of electrical stimulation without generation of cytotoxic bubbles even when the electrodes are placed near the spheroids. The spheroids can be cultivated in the closed microchambers because of the permeated nutrients through the hydrogel, thus the spheroids are stably addressable and the culture medium around the sealed microchambers can be simply exchanged. Synchronized beating of the spheroids can be optically analyzed in situ, which makes it possible to selectively collect electrically responsive cells for further use. As the hydrogel is electrically conductive, the amount of electrical charge needed for maturing the spheroids can be reduced by configuring electrodes on the top and the bottom of the microchamber. The bioreactor will be useful for efficient production of matured hiPSC-CMs for regenerative medicine and drug screening.


Subject(s)
Cell Differentiation/drug effects , Hydrogels/pharmacology , Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Cells, Cultured , Electric Conductivity , Electric Stimulation , Electrodes , Humans , Hydrogels/chemistry
15.
Sci Rep ; 8(1): 6368, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29686355

ABSTRACT

Wearable sensor device technologies, which enable continuous monitoring of biological information from the human body, are promising in the fields of sports, healthcare, and medical applications. Further thinness, light weight, flexibility and low-cost are significant requirements for making the devices attachable onto human tissues or clothes like a patch. Here we demonstrate a flexible and printed circuit system consisting of an enzyme-based amperometric sensor, feedback control and amplification circuits based on organic thin-film transistors. The feedback control and amplification circuits based on pseudo-CMOS inverters were successfuly integrated by printing methods on a plastic film. This simple system worked very well like a potentiostat for electrochemical measurements, and enabled the quantitative and real-time measurement of lactate concentration with high sensitivity of 1 V/mM and a short response time of a hundred seconds.

16.
Sci Rep ; 8(1): 3922, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29500398

ABSTRACT

Electrochemical sensor systems with integrated amplifier circuits play an important role in measuring physiological signals via in situ human perspiration analysis. Signal processing circuitry based on organic thin-film transistors (OTFTs) have significant potential in realizing wearable sensor devices due to their superior mechanical flexibility and biocompatibility. Here, we demonstrate a novel potentiometric electrochemical sensing system comprised of a potassium ion (K+) sensor and amplifier circuits employing OTFT-based pseudo-CMOS inverters, which have a highly controllable switching voltage and closed-loop gain. The ion concentration sensitivity of the fabricated K+ sensor was 34 mV/dec, which was amplified to 160 mV/dec (by a factor of 4.6) with high linearity. The developed system is expected to help further the realization of ultra-thin and flexible wearable sensor devices for healthcare applications.

17.
Sci Rep ; 8(1): 2253, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29396483

ABSTRACT

Contractile skeletal muscle cells were cultured so as to wrap around an electrode wire to enable their selective stimulation even when they were co-cultured with other electrically-excitable cells. Since the electrode wire was composed of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and polyurethane (PU), which is soft and highly capacitive (~10 mF cm-2), non-faradaic electrical stimulation with charge/discharge currents could be applied to the surrounding cells without causing significant damage even for longer periods (more than a week). The advantage of this new culture system was demonstrated in the study of chemotactic interaction of monocytes and skeletal muscle cells via myokines.


Subject(s)
Cell Culture Techniques/methods , Electric Stimulation/methods , Electrodes , Muscle Cells/physiology , Animals , Cell Line , Mice
18.
Biomed Microdevices ; 19(3): 68, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28776235

ABSTRACT

An array of porous microneedles was developed for minimally-invasive transdermal electrolytic connection through the human skin barrier, the stratum corneum. The length of microneedle was designed to be 100 µm so that it penetrates into the epidermis layer without pain. Each microneedle was supported by a thicker cylindrical post protruding from a planar substrate to realize its effective penetration even into elastic human skin. Since this support (post and substrate) was equally porous as the needles, the needle chip was entirely permeable for electrolyte. This ion-conductive porous microneedle array was applied to the transdermal conductometry with small direct current for local monitoring of intercellular swelling, edema. The porous needle-based electrode system could be a platform for various transdermal electrical diagnosis and treatments.


Subject(s)
Epidermal Cells , Extracellular Space/metabolism , Microinjections/instrumentation , Needles , Humans , Porosity
19.
Sci Rep ; 7(1): 3538, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28615726

ABSTRACT

Angiogenesis plays a critical role in many diseases, including macular degeneration. At present, the pathological mechanisms remain unclear while appropriate models dissecting regulation of angiogenic processes are lacking. We propose an in vitro angiogenesis process and test it by examining the co-culture of human retinal pigmental epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVEC) inside a microfluidic device. From characterisation of the APRE-19 monoculture, the tight junction protein (ZO-1) was found on the cells cultured in the microfluidic device but changes in the medium conditions did not affect the integrity of monolayers found in the permeability tests. Vascular endothelial growth factor (VEGF) secretion was elevated under low glucose and hypoxia conditions compared to the control. After confirming the angiogenic ability of HUVEC, the cell-cell interactions were analyzed under lowered glucose medium and chemical hypoxia by exposing ARPE-19 cells to cobalt (II) chloride (CoCl2). Heterotypic interactions between ARPE-19 and HUVEC were observed, but proliferation of HUVEC was hindered once the monolayer of ARPE-19 started breaking down. The above characterisations showed that alterations in glucose concentration and/or oxygen level as induced by chemical hypoxia causes elevations in VEGF produced in ARPE-19 which in turn affected directional growth of HUVEC.


Subject(s)
Cell Proliferation , Coculture Techniques/methods , Endothelial Cells/physiology , Epithelial Cells/physiology , Lab-On-A-Chip Devices , Neovascularization, Pathologic , Retinal Pigment Epithelium/physiology , Cell Line , Coculture Techniques/instrumentation , Culture Media/chemistry , Glucose/metabolism , Humans , Hypoxia , Oxygen/metabolism , Vascular Endothelial Growth Factor A/analysis , Zonula Occludens-1 Protein/analysis
20.
ACS Appl Mater Interfaces ; 9(23): 19513-19518, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28530794

ABSTRACT

A stretchable, electrochromic film of a uniform composite of poly(3,4-ethylenedioxythiophene):p-toluene sulfonic acid (PEDOT:PTS) and polyurethane (PU) (PEDOT/PU) was fabricated, and its integration with a hydrogel as a free-standing, stretchable electrochromic (EC) display was demonstrated. The PEDOT/PU composite film was prepared by the spin coating of a solution containing an EDOT monomer and PU, followed by oxidative polymerization using iron(III) tosylate at elevated temperature. The fabricated film showed reversible electrochromism without an external conductive support. The color change of the film can be used to quantify the progress of the redox reactions by means of digital camera image analysis and a custom mobile phone app.

SELECTION OF CITATIONS
SEARCH DETAIL
...