Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Microvasc Res ; 152: 104626, 2024 03.
Article in English | MEDLINE | ID: mdl-37963514

ABSTRACT

Retinopathy of prematurity (ROP), a retinal disease that can occur in premature infants, can lead to severe visual impairment. In this study, we examined the preventive and therapeutic effects of mammalian target of rapamycin complex 1 (mTORC1) inhibition on abnormal retinal blood vessels in a rat model of ROP. To induce ROP-like vascular abnormalities, rats were subcutaneously treated with KRN633, an inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinase, on postnatal day 7 (P7) and P8. KRN633-treated (ROP) rats were treated subcutaneously with the mTORC1 inhibitor rapamycin according to preventive and therapeutic protocols, i.e., from P11 to P13 (P11-P13) and from P14 to P20 (P14-P20), respectively. To compare with the effects of VEGF inhibition, KRN633 was administered according to similar protocols. Changes in retinal vasculature, phosphorylated ribosomal protein S6 (pS6), a downstream indicator of mTORC1 activity, and the proliferative status of vascular cells were evaluated at P14 and P21 using immunohistochemistry. Rapamycin treatment from P11 to P13 prevented increases in arteriolar tortuosity, capillary density, and the number of proliferating vascular cells, and eliminated pS6 immunoreactivity in ROP rats. KRN633 treatment at P11 and P12 (P11/P12) also prevented the appearance of ROP-like retinal blood vessels. Rapamycin treatment from P14 to P20 failed to attenuate arteriolar tortuosity but prevented increases in capillary density and proliferating vascular cell number at the vascular front, but not at the central zone. KRN633 treatment from P14 to P20 significantly reduced abnormalities in the retinal vasculature; however, the effects were inferior to those of KRN633 treatment on P11/P12. These results suggest that activation of the mTORC1 pathway in proliferating endothelial cells contributes to the appearance and progression of ROP-like retinal blood vessels. Therefore, inhibition of mTORC1 may be a promising approach for selectively targeting abnormal retinal blood vessels in ROP.


Subject(s)
Phenylurea Compounds , Quinazolines , Retinopathy of Prematurity , Animals , Rats , Animals, Newborn , Disease Models, Animal , Endothelial Cells/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/pharmacology , Retinal Vessels , Retinopathy of Prematurity/drug therapy , Retinopathy of Prematurity/prevention & control , Sirolimus/pharmacology , Sirolimus/metabolism , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Vascular Endothelial Growth Factor A/metabolism
2.
Org Biomol Chem ; 21(30): 6129-6133, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37477410

ABSTRACT

The concise syntheses of (-)-habiterpenol and (+)-2,3-epi-habiterpenol from (3aR)-(+)-sclareolide and 6-methoxyindanone in 11 and 12 steps, respectively, were enabled by the regioselective addition of the TMS-indenyl anion and the facile stereoselective metal hydride hydrogen atom transfer (MHAT)-initiated redox radical cyclization of alkenylsilane.

3.
Chem Pharm Bull (Tokyo) ; 70(4): 261-268, 2022.
Article in English | MEDLINE | ID: mdl-35370202

ABSTRACT

Habiterpenol is a G2 checkpoint inhibitor isolated from the culture broth of Phytohabitans sp. 3787_5. Here, we report the synthesis of new habiterpenol analogs through the total synthesis process of habiterpenol and evaluating the analogs for G2 checkpoint inhibitory activity. We investigated two different synthetic approaches for total synthesis, with intramolecular conjugate addition and Ti(III)-mediated radical cyclization as key reactions. Although the former was unsuccessful, the latter reaction facilitated stereoselective total synthesis and determination of the absolute configuration of habiterpenol. The extension of these chemistries to a structure-activity relationship (SAR) study gave new habiterpenol analogs, which could not be derived from natural habiterpenol and only be synthesized by applying the total synthesis. Therefore, this study provides important insights into SAR studies of habiterpenol.


Subject(s)
Triterpenes , Cyclization , Stereoisomerism , Structure-Activity Relationship , Triterpenes/pharmacology
4.
J Pharmacol Sci ; 146(4): 233-243, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34116737

ABSTRACT

Retinopathy of prematurity (ROP) is a proliferative retinal vascular disease, initiated by delayed retinal vascular growth after premature birth. In the majority of cases, ROP resolves spontaneously; however, a history of ROP may increase the risk of long-term visual problems. In this study, we evaluated the endothelial function of retinal blood vessels in adult rats with a history of ROP. ROP was induced in rats by subcutaneous injection of a vascular endothelial growth factor receptor tyrosine kinase inhibitor (KRN633) on postnatal day (P) 7 and P8. On P56, vasodilator responses to acetylcholine, GSK1016790A (an activator of transient receptor potential vanilloid 4 channels), NOR3 (a nitric oxide [NO] donor), and salbutamol (a ß2-adrenoceptor agonist) were assessed. Compared to age-matched controls, retinal vasodilator responses to acetylcholine and GSK1016790A were attenuated in P56 rats with a history of ROP. No attenuation of acetylcholine-induced retinal vasodilator response was observed under inhibition of NO synthase. Retinal vasodilator responses to NOR3 and salbutamol were unaffected. These results suggest that the production of and/or release of NO is impaired in retinal blood vessels in adult rats with a history of ROP. A history of ROP might increase the risk of impaired retinal circulation in adulthood.


Subject(s)
Endothelium, Vascular/physiopathology , Retinal Vessels/physiopathology , Retinopathy of Prematurity/physiopathology , Vasodilation , Acetylcholine/pharmacology , Albuterol/pharmacology , Animals , Animals, Newborn , Blood Circulation/drug effects , Female , Leucine/analogs & derivatives , Leucine/pharmacology , Nitric Oxide/physiology , Nitric Oxide Donors/pharmacology , Pregnancy , Rats, Sprague-Dawley , Sulfonamides/pharmacology , Vasodilation/drug effects
5.
J Pharm Health Care Sci ; 7(1): 18, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33941283

ABSTRACT

BACKGROUND: In clinical practice, a mixed suspension of clopidogrel bisulfate and magnesium oxide (MgO) tablets is administered frequently via a feeding tube. However, there is no report on the changes occurring when suspensions of these two drugs are combined, including the effects or potential decrease in dose following tube administration. Thus, the purpose of our study was to investigate the (i) changes caused by mixing clopidogrel bisulfate (ion form) and MgO tablets and (ii) effects on the administered clopidogrel dose after passing through a feeding tube. METHODS: The molecular structure of clopidogrel generated in a mixture of clopidogrel bisulfate and a basic compound, such as sodium bicarbonate or MgO tablet, was determined by 1H-NMR after extraction and purification. The suspension of clopidogrel bisulfate tablet alone and the mixed suspension of clopidogrel bisulfate tablet and MgO tablet were passed through a feeding tube. We compared the yield of the molecular form of clopidogrel from each passed fraction. RESULTS: The substance obtained from the mixture of clopidogrel bisulfate tablet and sodium bicarbonate or MgO tablet was identified as the molecular form of clopidogrel, and chemical degradation did not occur under these conditions. In the tube passage test, the yield of clopidogrel (molecular form) from the mixture of clopidogrel bisulfate and MgO tablets was lower than that from the suspension of clopidogrel bisulfate tablet alone. CONCLUSIONS: The mixture of clopidogrel bisulfate and MgO tablets caused a considerable reduction in the administered dose passed through the feeding tube. Therefore, it is recommended to administer the suspensions of clopidogrel bisulfate and MgO tablets separately for safe and effective pharmacotherapy.

6.
Org Lett ; 23(7): 2831-2835, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33750143

ABSTRACT

A one-pot γ-lactonization of homopropargyl alcohols via an alkyne deprotonation/boronation/oxidation sequence has been developed. Oxidation of the generated alkynyl boronate affords the corresponding ketene intermediate, which is trapped by the adjacent hydroxy group to furnish the γ-lactone. We have optimized the conditions as well as examined the substrate scope and synthetic applications of this efficient one-pot lactonization.

7.
Dev Dyn ; 250(4): 497-512, 2021 04.
Article in English | MEDLINE | ID: mdl-33085163

ABSTRACT

BACKGROUND: In mice, a tri-layered (superficial, intermediate, and deep) vascular structure is formed in the retina during the third postnatal week. Short-term treatment of newborn mice with vascular endothelial growth factor (VEGF) receptor inhibitors delays the formation of superficial vascular plexus and this allows us to investigate the developmental process of superficial and deep vascular plexuses at the same time. Using this model, we examined the effect of pharmacological depletion of retinal neurons on the formation of superficial and deep vascular plexuses. RESULTS: Neuronal cell loss induced by an intravitreal injection of N-methyl-d-aspartic acid on postnatal day (P) 8 delayed vascular development in the deep layer but not in the superficial layer in mice treated with KRN633, a VEGF receptor inhibitor, on P0 and P1. In KRN633-treated mice, neuronal cell loss decreased the number of vertical sprouts originating from the superficial plexus without affecting the number of angiogenic sprouts growing in front. Neuronal cell loss did not impair networks of fibronectin and astrocytes in the superficial layer. CONCLUSIONS: Our results suggest that inner retinal neurons play a crucial role in forming the deep vascular plexus by directing the sprouts from the superficial blood vessels to the deep layer.


Subject(s)
Neovascularization, Physiologic , Retina/embryology , Animals , Astrocytes , Female , Male , Mice, Inbred ICR , N-Methylaspartate , Phenylurea Compounds , Quinazolines
8.
Cell Tissue Res ; 382(3): 529-549, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32897421

ABSTRACT

Misdirected vascular growth frequently occurs in the neovascular diseases in the retina. However, the mechanisms are still not fully understood. In the present study, we created capillary-free zones in the central and peripheral retinas in neonatal mice by pharmacological blockade of vascular endothelial growth factor (VEGF) signaling. Using this model, we investigated the process and mechanisms of revascularization in the central and peripheral avascular areas. After the completion of a 2-day treatment with the VEGF receptor tyrosine kinase inhibitor KRN633 on postnatal day (P) 4 and P5, revascularization started on P8 in the central avascular area where capillaries had been dropped out. The expression levels of VEGF were higher in the peripheral than in the central avascular area. However, the expansion of the vasculature in the peripheral avascular retina remained suppressed until revascularization had been completed in the central avascular area. Additionally, we found disorganized endothelial cell division, misdirected blood vessels with irregular diameters, and abnormal fibronectin networks at the border of the vascular front and the avascular retina. In the central avascular area, a slight amount of fibronectin as non-vascular component re-formed to provide a scaffold for revascularization. Mechanistic analysis revealed that higher levels of VEGF attenuated the migratory response of endothelial cells without decreasing the proliferative activity. These results suggest that the presence of concentration range of VEGF, which enhances both migration and proliferation of the endothelial cells, and the structurally normal fibronectin network contribute to determine the proper direction of angiogenesis.


Subject(s)
Receptors, Vascular Endothelial Growth Factor/metabolism , Retina/physiopathology , Retinal Neovascularization/physiopathology , Animals , Animals, Newborn , Mice
9.
Org Lett ; 22(13): 5131-5134, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32610922

ABSTRACT

The synthesis of habiterpenol, a G2 checkpoint inhibitor, was achieved through the stereoselective Ti(III)-mediated radical cyclization of a ß-epoxide as the key reaction. Moreover, the absolute configuration of habiterpenol was determined.

10.
Biol Pharm Bull ; 43(5): 859-863, 2020.
Article in English | MEDLINE | ID: mdl-32378561

ABSTRACT

Pathological angiogenesis is a leading cause of blindness in several retinal diseases. The key driving factor inducing pathological angiogenesis is the pronounced hypoxia leading to a marked, increased production of vascular endothelial growth factor (VEGF). The aim of this study was to determine whether the abnormal vascular growth occurs in a manner dependent on the degree of the vascular defects. Vascular defects of two different degrees were created in the retina by subcutaneously treating neonatal rats with the VEGF receptor (VEGFR) tyrosine kinase inhibitor KRN633 on postnatal day (P) 4 and P5 (P4/5) or P7 and P8 (P7/8). The structure of the retinal vasculature changes was examined immunohistochemically. Prevention of vascular growth and regression of some preformed capillaries were observed on the next day, after completion of each treatment (i.e., P6 and P9). The vascular regrowth occurred as a result of eliminating the inhibitory effect on the VEGFR signaling pathway. KRN633 (P4/5)-treated rats exhibited a retinal vasculature with aggressive intravitreal neovascularization on P21. On the other hand, the appearance of tortuous arteries is a representative vascular pathological feature in retinas of KRN633 (P7/8)-treated groups. These results suggest that an interruption of the retinal vascular development at different time points induces different vascular pathological features in the retina. Pharmacological agents targeting the VEGF signaling pathway are useful for creating an abnormal retinal vasculature with various pathological features in order to evaluate the efficacy of anti-angiogenic compounds.


Subject(s)
Phenylurea Compounds/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Quinazolines/administration & dosage , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Retinal Vessels/drug effects , Animals , Animals, Newborn , Phenotype , Rats, Sprague-Dawley , Retinal Vessels/growth & development , Retinal Vessels/pathology , Time Factors
11.
Cell Tissue Res ; 379(3): 473-486, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31788758

ABSTRACT

An impairment of cellular interactions between the elements of the neurovascular unit contributes to the onset and/or progression of retinal diseases. The present study aims to examine how elements of the neurovascular unit are altered in a rat model of retinopathy of prematurity (ROP). Neonatal rats were treated subcutaneously with the vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor KRN633 (10 mg/kg) on postnatal day (P) 7 and P8 to induce ROP. Morphological assessments were performed of blood vessels, astrocytes and neuronal cells in the retina. Aggressive angiogenesis, tortuous arteries and enlarged veins were observed in the retinal vasculature of KRN633-treated (ROP) rats from P14 to P28, compared to age-matched control (vehicle-treated) animals. Morphological abnormalities in the retinal vasculature showed a tendency toward spontaneous recovery from P28 to P35 in ROP rats. Immunofluorescence staining for glial fibrillary acidic protein and Pax2 (astrocyte markers) revealed that morphological changes to and a reduction in the number of astrocytes occurred in ROP rats. The developmental cell death was slightly accelerated in ROP rats; however, no visible changes in the morphology of retinal layers were observed on P35. The abnormalities in astrocytes might contribute, at least in part, to the formation of abnormal retinal blood vessels and the pathogenesis of ROP.


Subject(s)
Disease Models, Animal , Retina/pathology , Retinal Neovascularization/pathology , Retinopathy of Prematurity/pathology , Animals , Female , Phenylurea Compounds/pharmacology , Pregnancy , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Rats , Rats, Sprague-Dawley , Retina/drug effects , Retina/metabolism , Retinal Neovascularization/embryology , Retinal Neovascularization/metabolism , Retinopathy of Prematurity/embryology , Retinopathy of Prematurity/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
12.
Biochemistry ; 58(50): 5066-5073, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31756295

ABSTRACT

Scopranones, produced by Streptomyces sp. BYK-11038, are the novel bone morphogenetic protein inhibitors characterized by atypical two scoop-like moieties and a 3-furanone moiety. Two scoop-like moieties connected to a 3-furanone have not previously been reported in natural products, and their biosynthesis must occur via a unique pathway. Feeding experiments using 13C-labeled precursors indicated that scopranones were synthesized from three acetates and three butyrates in polyketide-type biosynthesis. Genome mining of Streptomyces sp. BYK-11038 revealed that the candidate biosynthetic gene cluster contains 21 open reading frames (ORFs), including three modular polyketide synthases (PKSs; SprA, SprB, and SprC), which were composed of 4 modules with one loading module and 18 additional ORFs (SprD to SprU) spanning a distance of 55 kbp. The characterization of in-frame deletion mutants and feeding experiments with the predicted extender units indicated that two genes, sprP and sprR, encoding discrete 3-oxoacyl-ACP synthases, and a gene, sprO, encoding crotonyl-CoA reductase, were involved in assembling an unusual C8 branched extender unit, 2-(2-ethylbutyl)malonyl-CoA. Additionally, three ORFs, sprM, sprN, and sprT, encoding cytochrome P450s and a monooxygenase, are important tailoring enzymes in post-PKS modification. SprT is an essential enzyme for decarboxylative ring contraction via oxidation, which converts the 2-pyranone to a 3-furanone.


Subject(s)
Furans/chemistry , Furans/metabolism , Polyketide Synthases/chemistry , Polyketide Synthases/metabolism , Biocatalysis , Open Reading Frames/genetics , Polyketide Synthases/genetics , Streptomyces/enzymology
13.
Curr Eye Res ; 44(12): 1360-1368, 2019 12.
Article in English | MEDLINE | ID: mdl-31317786

ABSTRACT

Purpose: Retinopathy of prematurity (ROP) is characterized by morphological abnormalities in retinal blood vessels, but how an episode of ROP affects vascular function remains to be fully elucidated. The purpose of the present study was to assess the distribution of pericyte/smooth muscle in retinal blood vessels and retinal vasodilator responses in a rat model of ROP.Methods: ROP was induced in rats by the subcutaneous injection of the vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor KRN633 (10 mg/kg) on postnatal day (P) 7 and P8. The distribution of pericyte/smooth muscle in retinal blood vessels was examined on P14 and P35 by immunohistochemistry. Retinal vasodilator responses were assessed on P35 by measuring the diameter of retinal arterioles in fundus images.Results: In retinas of KRN633-treated (ROP) rats, progressive angiogenesis, tortuous arteries, enlarged veins, and enhanced expression of α-smooth muscle actin in pericytes on capillaries and veins were observed on P14. These abnormalities in retinal vasculature showed a tendency to normalize by P35. Vasodilation of retinal arterioles induced by acetylcholine, an endothelium-dependent vasodilator, was smaller in P35 ROP rats than age-matched controls, whereas retinal vasodilator responses to the nitric oxide (NO) donor NOR3 were unaltered.Conclusions: Phenotypic changes in pericytes occur in the ROP model rats and endothelium-dependent vasodilatory mechanisms in retinal blood vessels are impaired. The impaired vasodilator function may contribute to the progression and pathogenesis of ROP.


Subject(s)
Endothelium, Vascular/physiopathology , Retinal Vessels/physiopathology , Retinopathy of Prematurity/physiopathology , Vasodilation/physiology , Animals , Animals, Newborn , Disease Models, Animal , Immunohistochemistry , Microscopy, Confocal , Rats , Rats, Sprague-Dawley , Retinal Vessels/pathology , Retinopathy of Prematurity/diagnosis
14.
Org Lett ; 21(14): 5596-5599, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31246478

ABSTRACT

The total synthesis of simpotentin (1), a new potentiator of amphotericin B activity against Candida albicans, was achieved. Our research results enabled the access of all stereoisomers of 1 and the elucidation of the unknown absolute configuration of 1. Furthermore, one of the stereoisomers is a better amphotericin B potentiator than 1 and is an excellent lead compound for the development of a novel amphotericin B potentiator.


Subject(s)
Amphotericin B/pharmacology , Mannosides/chemistry , Mannosides/pharmacology , Pyrans/chemical synthesis , Pyrans/pharmacology , Candida albicans/drug effects , Chemistry Techniques, Synthetic , Drug Synergism , Mannosides/chemical synthesis , Microbial Sensitivity Tests , Pyrans/chemistry , Stereoisomerism
15.
J Pharmacol Sci ; 136(4): 177-188, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29627228

ABSTRACT

Abnormalities in retinal blood vessels and neuronal function persist in eyes undergoing retinopathy of prematurity. In this study, we examined morphological and functional changes in retinal blood vessels and neurons in mice that had undergone short-term interruption of retinal vascular development through inhibition of vascular endothelial growth factor (VEGF) signaling. In mice treated with the VEGF receptor tyrosine kinase inhibitor KRN633 on postnatal day (P) 0 and 1, the vascular density in the retinal surface increased by P12, but development of deep retinal vascular plexus and choroidal vasculature was delayed until P14. Overall retinal morphology was mostly normal in KRN633-treated mice during the observation period (∼P28), with the exception of P8 and P14. On P28, abnormalities in retinal vascular patterns were evident, but electroretinogram and retinal blood perfusion were within the normal range. Abnormal architecture of retinal vasculature disturbs retinal hemodynamics; therefore, mice treated postnatally with VEGF receptor inhibitors could serve as an animal model for studying the regulatory mechanism of local retinal blood flow and the effect of persistent abnormal retinal vascular patterns on the risk of onset of retinal ischemia.


Subject(s)
Retina/physiopathology , Retinal Vessels/abnormalities , Animals , Animals, Newborn , Choroid/blood supply , Disease Models, Animal , Electroretinography , Female , Ischemia , Male , Mice, Inbred ICR , Phenylurea Compounds/pharmacology , Quinazolines/pharmacology , Retinal Vessels/growth & development , Signal Transduction , Time Factors , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/physiology
16.
Exp Eye Res ; 168: 115-127, 2018 03.
Article in English | MEDLINE | ID: mdl-29339088

ABSTRACT

A short-term blockade of the vascular endothelial growth factor (VEGF)-mediated pathway in neonatal rats results in formation of severe retinopathy of prematurity (ROP)-like retinal blood vessels. The present study aimed to examine the role of retinal neurons in the formation of abnormal retinal blood vessels. Newborn rats were treated subcutaneously with the VEGF receptor tyrosine kinase inhibitor, KRN633 (10 mg/kg), or its vehicle (0.5% methylcellulose in water) on postnatal day (P) 7 and P8. To induce excitotoxic loss of retinal neurons, N-methyl-D-aspartic acid (NMDA) was injected into the vitreous chamber of the eye on P9. Changes in retinal morphology, blood vessels, and proliferative status of vascular cells were evaluated on P11 and P14. The number of cells in the ganglion cell layer and the thickness of the inner plexiform layer and inner nuclear layer were significantly decreased 2 days (P11) after NMDA treatment. The pattern and degree of NMDA-induced changes in retinal morphology were similar between vehicle-treated (control) and KRN633-treated (ROP) rats. In ROP rats, increases in the density of capillaries, the tortuosity index of arteries, and the proliferating vascular cells were observed on P14. The expansion of the endothelial cell network was prevented, and the capillary density and the number of proliferating cells were reduced in NMDA-treated retinas of both control and ROP rats. Following NMDA-induced neuronal cell loss, no ROP-like blood vessels were observed in the retinas. These results suggest that retinal neurons play an important role in the formation of normal and ROP-like retinal blood vessels.


Subject(s)
Retinal Neurons/pathology , Retinal Vessels/pathology , Retinopathy of Prematurity/pathology , Animals , Capillaries/pathology , Cell Proliferation/drug effects , Disease Models, Animal , N-Methylaspartate/pharmacology , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Rats , Rats, Sprague-Dawley , Retina/metabolism , Retina/pathology , Retinal Ganglion Cells/pathology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
17.
ChemMedChem ; 13(5): 411-421, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29323466

ABSTRACT

Currently, pyripyropene A, which is isolated from the culture broth of Aspergillus fumigatus FO-1289, is the only compound known to strongly and selectively inhibit the isozyme sterol O-acyltransferase 2 (SOAT2). To aid in the development of new cholesterol-lowering or anti-atherosclerotic agents, new A-ring simplified pyripyropene A analogues have been designed and synthesized based on total synthesis, and the results of structure-activity relationship studies of pyripyropene A. Among the analogues, two A-ring simplified pyripyropene A analogues exhibited equally efficient SOAT2 inhibitory activity to that of natural pyripyropene A. These new analogues are the most potent and selective SOAT2 inhibitors to be used as synthetic compounds and attractive seed compounds for the development of drug for dyslipidemia, including atherosclerotic disease and steatosis.


Subject(s)
Drug Design , Enzyme Inhibitors/pharmacology , Pyridines/pharmacology , Sesquiterpenes/pharmacology , Sterol O-Acyltransferase/antagonists & inhibitors , Animals , Aspergillus fumigatus/chemistry , CHO Cells , Cells, Cultured , Chlorocebus aethiops , Cricetulus , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Conformation , Pyridines/chemical synthesis , Pyridines/chemistry , Sesquiterpenes/chemical synthesis , Sesquiterpenes/chemistry , Sterol O-Acyltransferase/metabolism , Structure-Activity Relationship , Sterol O-Acyltransferase 2
19.
Dev Dyn ; 247(5): 699-711, 2018 05.
Article in English | MEDLINE | ID: mdl-29247590

ABSTRACT

BACKGROUND: A short-term interruption of vascular development causes structural abnormalities in retinal vasculature. However, the detailed changes in vascular components (endothelial cells, pericytes, and basement membranes) remain to be fully determined. The present study aimed to provide a detailed description of morphological changes in vascular components following a short-term interruption of retinal vascular development in mice. RESULTS: Two-day treatment of neonatal mice with the vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor KRN633 (10 mg/kg, subcutaneously) on postnatal day (P)0 and P1 (P0/1) and P4 and P5 (P4/5) induced different degrees and patterns of impairment of retinal vascular development. Three days after completion of the treatment, the delayed radial vascular growth occurred in P0/1 group mice, whereas in P4/5 group mice, revascularization preferentially occurred in the central avascular area, and radial vascular growth remained suppressed by P10. Differences in α-smooth muscle actin expression in pericytes were noted in the processes between normal vascular formation and vascular regrowth. The changes in vascular cells were associated with the hypoxia-induced enhancement of VEGF expression in the superficial retinal layer. CONCLUSIONS: These findings suggest that the phenotype of vascular cells is altered following a short-term interruption of vascular development in the retina. Developmental Dynamics 247:699-711, 2018. © 2017 Wiley Periodicals, Inc.


Subject(s)
Pericytes/metabolism , Retina/metabolism , Animals , Animals, Newborn , Cell Proliferation/drug effects , Female , Immunohistochemistry , Male , Mice , Pericytes/drug effects , Phenylurea Compounds/pharmacology , Quinazolines/pharmacology , Receptors, Vascular Endothelial Growth Factor/metabolism , Retina/cytology , Retina/drug effects , Vascular Endothelial Growth Factor A/metabolism
20.
Org Lett ; 19(21): 5980-5983, 2017 11 03.
Article in English | MEDLINE | ID: mdl-29063763

ABSTRACT

Three new compounds, designated scopranones A-C, were isolated from the culture broth of a soil isolate, Streptomyces sp. BYK-11038, and shown to be inhibitors of bone morphogenetic protein (BMP) induced alkaline phosphatase activity in a BMP receptor mutant cell line. The structures were elucidated using NMR and other spectral data. The scopranones have an unusual structure with two atypical scooplike moieties linked at the tails to form part of a unique 3-furanone ring.

SELECTION OF CITATIONS
SEARCH DETAIL
...