Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Mycol ; 61(10)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37818721

ABSTRACT

Cryptococcus neoformans is the primary causative agent of cryptococcosis. Since C. neoformans thrives in environments and its optimal growth temperature is 25-30°C, it needs to adapt to heat stress in order to cause infection in mammalian hosts. In this study, we aimed to investigate the role of an uncharacterized gene, CNAG_03308. Although the CNAG_03308 deletion strain grew as well as the parent strain KN99, it produced yeast cells with abnormal morphology at 37°C and failed to propagate at 39°C. Furthermore, the deletion strain exhibited slower growth at 37°C in the presence of congo red, which is a cell wall stressor. When cultured at 39°C, the deletion strain showed strong staining with fluorescent probes for cell wall chitin and chitosan, including FITC-labeled wheat germ agglutinin, Eosin Y, and calcofluor white. The transmission electron microscopy of the deletion strain revealed a thickened inner layer of the cell wall containing chitin and chitosan under heat stress. This cell-surface altered deletion strain induced dendritic cells to secrete more interleukin (IL)-6 and IL-23 than the control strains under heat stress. In a murine infection study, C57BL/6 mice infected with the deletion strain exhibited lower mortality and lower fungal burden in the lungs and brain compared to those infected with the control strains. Based on these findings, we concluded that CNAG_03308 gene is necessary for C. neoformans to adapt to heat stress both in vitro and in the host environment. Therefore, we designated the CNAG_03308 gene as TVF1, which stands for thermotolerance and virulence-related factor 1.


Cryptococcus neoformans is a fungal pathogen causing cryptococcosis, which requires thermotolerance to proliferate in the host environment. In the present study, we identified a novel gene, TVF1 (CNAG_03308), required for thermotolerance and virulence by reverse genetics approach.


Subject(s)
Chitosan , Cryptococcosis , Cryptococcus neoformans , Thermotolerance , Animals , Mice , Cryptococcus neoformans/genetics , Virulence , Mice, Inbred C57BL , Cryptococcosis/microbiology , Cryptococcosis/veterinary , Chitin , Fungal Proteins/genetics , Mammals
2.
Sci Rep ; 11(1): 15125, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34302038

ABSTRACT

The vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) axis is an essential regulator of angiogenesis and important therapeutic target in cancer. Ramucirumab is an anti-VEGFR2 monoclonal antibody used for the treatment of several cancers. Increased circulating VEGF-A levels after ramucirumab administration are associated with a worse prognosis, suggesting that excess VEGF-A induced by ramucirumab negatively affects treatment efficacy and that neutralizing VEGF-A may improve treatment outcomes. Here, we evaluated the effect of combination treatment with an anti-VEGFR2 antibody and anti-VEGF-A antibody on gastric tumor progression and normal tissues using a preclinical BALB/c-nu/nu mouse xenograft model. After anti-VEGFR2 antibody treatment in mice, a significant increase in plasma VEGF-A levels was observed, mirroring the clinical response. The elevated VEGF-A was host-derived. Anti-VEGF-A antibody co-administration enhanced the anti-tumor effect of the anti-VEGFR2-antibody without exacerbating the toxicity. Mechanistically, the combination treatment induced intra-tumor molecular changes closely related to angiogenesis inhibition and abolished the gene expression changes specifically induced by anti-VEGFR2 antibody treatment alone. We particularly identified the dual treatment-selective downregulation of ZEB1 expression, which was critical for gastric cancer cell proliferation. These data indicate that the dual blockade of VEGF-A and VEGFR2 is a rational strategy to ensure the anti-tumor effect of angiogenesis-targeting therapy.


Subject(s)
Antibodies, Monoclonal/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Xenograft Model Antitumor Assays/methods
3.
Eur J Immunol ; 51(9): 2281-2295, 2021 09.
Article in English | MEDLINE | ID: mdl-33728652

ABSTRACT

Cryptococcus gattii is a capsular pathogenic fungus causing life-threatening cryptococcosis. Although the capsular polysaccharides (CPs) of C. gattii are considered as virulence factors, the physiological significance of CP biosynthesis and of CPs themselves is not fully understood, with many conflicting data reported. First, we demonstrated that CAP gene deletant of C. gattii completely lacked capsule layer and its virulence, and that the strain was susceptible to host-related factors including oxidizing, hypoxic, and hypotrophic conditions in vitro. Extracellular CPs recovered from culture supernatant bound specifically to C. gattii acapsular strains, not to other fungi and immune cells, and rendered them the immune escape effects. In fact, dendritic cells (DCs) did not efficiently uptake the CP-treated acapsular strains, which possessed no visible capsule layer, and a decreased amount of phosphorylated proteins and cytokine levels after the stimulation. DCs recognized C. gattii acapuslar cells via an immune receptor CD11b- and Syk-related pathway; however, CD11b did not bind to CP-treated acapsular cells. These results suggested that CPs support immune evasion by coating antigens on C. gattii and blocking the interaction between CD11b and C. gattii cells. Here, we describe the importance of CPs in pathogenicity and immune evasion mechanisms of C. gattii.


Subject(s)
CD11b Antigen/immunology , Cryptococcus gattii/immunology , Fungal Capsules/immunology , Fungal Polysaccharides/immunology , Immune Evasion/immunology , Syk Kinase/metabolism , Animals , Cryptococcosis/immunology , Cryptococcus gattii/genetics , Cryptococcus gattii/pathogenicity , Cytokines/biosynthesis , Dendritic Cells/immunology , Female , Fungal Capsules/genetics , Fungal Polysaccharides/genetics , Gene Deletion , Humans , Mice , Mice, Inbred C57BL , Polysaccharides/genetics , Polysaccharides/immunology , Virulence Factors/immunology
4.
J Med Chem ; 63(8): 4183-4204, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32202790

ABSTRACT

Tankyrases (TNKS/TNKS2) belong to the poly(ADP-ribose) polymerase family. Inhibition of their enzymatic activities attenuates the Wnt/ß-catenin signaling, which plays an important role in cancer pathogenesis. We previously reported the discovery of RK-287107, a spiroindoline-based, highly selective, potent tankyrase inhibitor. Herein we describe the optimization process of RK-287107 leading to RK-582, which exhibits a markedly improved robust tumor growth inhibition in a COLO-320DM mouse xenograft model when orally administered. In addition to the dose-dependent elevation and attenuation of the levels of biomarkers AXIN2 and ß-catenin, respectively, results of the TCF reporter and cell proliferation studies on COLO-320DM are discussed.


Subject(s)
Colonic Neoplasms/drug therapy , Drug Design , Drug Discovery/methods , Enzyme Inhibitors/administration & dosage , Tankyrases/antagonists & inhibitors , Administration, Oral , Animals , Cell Line, Tumor , Colonic Neoplasms/enzymology , Enzyme Inhibitors/chemistry , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Protein Structure, Tertiary , Rats , Tankyrases/chemistry , Tankyrases/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...