Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 25(24): 24500-24506, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30009359

ABSTRACT

Landfill sites are significant sources of methane gas globally. Understanding the temporal variabilities of methane emissions from landfill sites is necessary for estimating such emissions. In this study, an automated monitoring system was used to monitor methane emission flux and concentration on daily and hourly time scales at a landfill site. Measured methane emission fluxes were almost negligible in the studied area. However, methane concentration at landfill surface at nighttime was significantly higher than those in the daytime, which demonstrates the importance of investigating methane emissions at an hourly time scale, including during nighttime. The daily and hourly variations in methane concentration were well correlated with either soil temperature or volumetric water content near the surface. The obtained relations indicate that the automated monitoring system measurements can facilitate a more comprehensive understanding of the methane emission mechanisms at different time scales.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Methane/analysis , Waste Disposal Facilities , Environmental Monitoring/instrumentation , Japan , Refuse Disposal , Soil/chemistry , Time Factors , Water/analysis
2.
J Air Waste Manag Assoc ; 66(12): 1257-1267, 2016 12.
Article in English | MEDLINE | ID: mdl-27575846

ABSTRACT

A long-term monitoring of composition of landfill gases in the region with high rainfall was conducted using an argon assay in order to discuss air intrusion into the dump site. Gas samples were taken from vertical gas monitoring pipes installed along transects at two sections (called new and old) of an abandoned waste dump site in Sri Lanka. N2O concentrations varied especially widely, by more than three orders of magnitude (0.046-140 ppmv). The nitrogen/argon ratio of landfill gas was normally higher than that of fresh air, implying that denitrification occurred in the dump site. Argon assays indicate that both N2 and N2O production occurred inside waste and more significantly in the old section. The Ar assay would help for evaluations of N2O emission in developing countries. IMPLICATIONS: A long-term monitoring of composition of landfill gases in the region with high rainfall was conducted using an argon assay in order to discuss air intrusion into the dump site. Argon assays indicate that both N2 and N2O production occurred inside waste and more significantly in the old section.


Subject(s)
Air Pollutants/analysis , Refuse Disposal , Solid Waste/analysis , Waste Disposal Facilities , Environmental Monitoring/methods , Gases/analysis , Nitrogen/analysis , Nitrous Oxide/analysis , Sri Lanka , Time Factors
3.
Waste Manag ; 31(12): 2464-72, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21813272

ABSTRACT

Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, ρ(b), and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D(p)/D(o), ratio of gas diffusion coefficients in soil and free air) and air permeability (k(a)) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting ρ(b) values ranging from 1.40 to 2.10 g cm(-3). Results showed that D(p) and k(a) values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2mm) under variably-saturated conditions for a given soil-air content (ε), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D(p) and k(a) was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D(p)/D(f), the ratio of measured D(p) to D(p) in total porosity (f), (ii) for air permeability k(a)/k(a)(,pF4.1), the ratio of measured k(a) to k(a) at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content (ε) to total porosity (f) (air saturation). Based on the normalized parameters, predictive power-law models for D(p)(ε/f) and k(a)(ε/f) models were developed based on a single parameter (water blockage factor M for D(p) and P for k(a)). The water blockage factors, M and P, were found to be linearly correlated to ρ(b) values, and the effects of dry bulk density on D(p) and k(a) for both '+gravel' and '-gravel' fractions were well accounted for by the new models.


Subject(s)
Air Pollutants/analysis , Greenhouse Effect , Models, Theoretical , Particle Size , Refuse Disposal/methods , Soil/analysis , Groundwater/analysis
4.
J Hazard Mater ; 141(3): 793-802, 2007 Mar 22.
Article in English | MEDLINE | ID: mdl-17030419

ABSTRACT

In this study, heavy metal leaching from aerobic and anaerobic landfill bioreactor test cells for co-disposed municipal solid waste incineration (MSWI) bottom ash and shredded low-organic residues has been investigated. Test cells were operated for 1 year. Heavy metals which were comparatively higher in leachate of aerobic cell were copper (Cu), lead (Pb), boron (B), zinc (Zn), manganese (Mn) and iron (Fe), and those apparently lower were aluminum (Al), arsenic (As), molybdenum (Mo), and vanadium (V). However, no significant release of heavy metals under aerobic conditions was observed compared to anaerobic and control cells. Furthermore, there was no meaningful correlation between oxidation-reduction potential (ORP) and heavy metal concentrations in the leachates although some researchers speculate that aeration may result in excessive heavy metal leaching. No meaningful correlation between dissolved organic carbon (DOC) and leaching of Cu and Pb was another interesting observation. The only heavy metal that exceeded the state discharge limits (10mg/l, to be enforced after April 2005) in the aerobic cell leachate samples was boron and there was no correlation between boron leaching and ORP. Higher B levels in aerobic cell should be due to comparatively lower pH values in this cell. However, it is anticipated that this slightly increased concentrations of B (maximum 25mg/l) will not create a risk for bioreactor operation; rather it should be beneficial for long-term stability of the landfill through faster washout. It was concluded that aerobization of landfills of heavy metal rich MSWI bottom ash and shredded residues is possible with no dramatic increase in heavy metals in the leachate.


Subject(s)
Bioreactors , Metals, Heavy/analysis , Refuse Disposal , Water Pollutants, Chemical/analysis , Aerobiosis , Anaerobiosis , Carbon/analysis , Incineration , Industrial Waste , Nitrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...