Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 8: 1753, 2017.
Article in English | MEDLINE | ID: mdl-29081784

ABSTRACT

To avoid low oxygen, oxygen deficiency or oxygen deprivation, deepwater rice cultivated in flood planes can develop elongated internodes in response to submergence. Knowledge of the gene regulatory networks underlying rapid internode elongation is important for an understanding of the evolution and adaptation of major crops in response to flooding. To elucidate the genetic and molecular basis controlling their deepwater response we used microarrays and performed expression quantitative trait loci (eQTL) and phenotypic QTL (phQTL) analyses of internode samples of 85 recombinant inbred line (RIL) populations of non-deepwater (Taichung 65)- and deepwater rice (Bhadua). After evaluating the phenotypic response of the RILs exposed to submergence, confirming the genotypes of the populations, and generating 188 genetic markers, we identified 10,047 significant eQTLs comprised of 2,902 cis-eQTLs and 7,145 trans-eQTLs and three significant eQTL hotspots on chromosomes 1, 4, and 12 that affect the expression of many genes. The hotspots on chromosomes 1 and 4 located at different position from phQTLs detected in this study and other previous studies. We then regarded the eQTL hotspots as key regulatory points to infer causal regulatory networks of deepwater response including rapid internode elongation. Our results suggest that the downstream regulation of the eQTL hotspots on chromosomes 1 and 4 is independent, and that the target genes are partially regulated by SNORKEL1 and SNORKEL2 genes (SK1/2), key ethylene response factors. Subsequent bioinformatic analyses, including gene ontology-based annotation and functional enrichment analysis and promoter enrichment analysis, contribute to enhance our understanding of SK1/2-dependent and independent pathways. One remarkable observation is that the functional categories related to photosynthesis and light signaling are significantly over-represented in the candidate target genes of SK1/2. The combined results of these investigations together with genetical genomics approaches using structured populations with a deepwater response are also discussed in the context of current molecular models concerning the rapid internode elongation in deepwater rice. This study provides new insights into the underlying genetic architecture of gene expression regulating the response to flooding in deepwater rice and will be an important community resource for analyses on the genetic basis of deepwater responses.

2.
Biosci Biotechnol Biochem ; 81(5): 906-913, 2017 May.
Article in English | MEDLINE | ID: mdl-28079456

ABSTRACT

Because environmental stress can reduce crop growth and yield, the identification of genes that enhance agronomic traits is increasingly important. Previous screening of full-length cDNA overexpressing (FOX) rice lines revealed that OsTIFY11b, one of 20 TIFY proteins in rice, affects plant size, grain weight, and grain size. Therefore, we analyzed the effect of OsTIFY11b and nine other TIFY genes on the growth and yield of corresponding TIFY-FOX lines. Regardless of temperature, grain weight and culm length were enhanced in lines overexpressing TIFY11 subfamily genes, except OsTIFY11e. The TIFY-FOX plants exhibited increased floret number and reduced days to flowering, as well as reduced spikelet fertility, and OsTIFY10b, in particular, enhanced grain yield by minimizing decreases in fertility. We suggest that the enhanced growth of TIFY-transgenic rice is related to regulation of the jasmonate signaling pathway, as in Arabidopsis. Moreover, we discuss the potential application of TIFY overexpression for improving crop yield.


Subject(s)
Cyclopentanes/metabolism , Oryza/growth & development , Oryza/genetics , Oxylipins/metabolism , Plant Proteins/genetics , Signal Transduction , Cyclopentanes/pharmacology , Flowers/drug effects , Flowers/growth & development , Gene Expression , Hot Temperature , Oryza/cytology , Oryza/drug effects , Oxylipins/pharmacology , Signal Transduction/drug effects
3.
PLoS One ; 11(7): e0160061, 2016.
Article in English | MEDLINE | ID: mdl-27462908

ABSTRACT

A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.


Subject(s)
Gene Expression Regulation, Plant/radiation effects , Heavy Ions , Oryza/genetics , DNA Repair , Linear Energy Transfer , Oryza/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Development ; 143(7): 1217-27, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26903508

ABSTRACT

Embryogenesis in rice is different from that of most dicotolydonous plants in that it shows a non-stereotypic cell division pattern, formation of dorsal-ventral polarity, and endogenous initiation of the radicle. To reveal the transcriptional features associated with developmental events during rice early embryogenesis, we used microarray analysis coupled with laser microdissection to obtain both spatial and temporal transcription profiles. Our results allowed us to determine spatial expression foci for each expressed gene in the globular embryo, which revealed the importance of phytohormone-related genes and a suite of transcription factors to early embryogenesis. Our analysis showed the polarized expression of a small number of genes along the apical-basal and dorsal-ventral axes in the globular embryo, which tended to fluctuate in later developmental stages. We also analyzed gene expression patterns in the early globular embryo and how this relates to expression in embryonic organs at later stages. We confirmed the accuracy of the expression patterns found by microarray analysis of embryo subdomains using in situ hybridization. Our study identified homologous genes from Arabidopsis thaliana with known functions in embryogenesis in addition to unique and uncharacterized genes that show polarized expression patterns during embryogenesis. The results of this study are presented in a database to provide a framework for spatiotemporal gene expression during rice embryogenesis, to serve as a resource for future functional analysis of genes, and as a basis for comparative studies of plant embryogenesis.


Subject(s)
Arabidopsis/embryology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Oryza/embryology , Plant Growth Regulators/genetics , Cell Division/physiology , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis
5.
Plant J ; 85(1): 46-56, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26603141

ABSTRACT

The hypersensitive response (HR) of plants is one of the earliest responses to prevent pathogen invasion. A brown dot lesion on a leaf is visual evidence of the HR against the blast fungus Magnaporthe oryzae in rice, but tracking the browning process has been difficult. In this study, we induced the HR in rice cultivars harboring the blast resistance gene Pit by inoculation of an incompatible M. oryzae strain, which generated a unique resistance lesion with a brown ring (halo) around the brown fungal penetration site. Inoculation analysis using a plant harboring Pit but lacking an enzyme that catalyzes tryptamine to serotonin showed that high accumulation of the oxidized form of serotonin was the cause of the browning at the halo and penetration site. Our analysis of the halo browning process in the rice leaf revealed that abscisic acid enhanced biosynthesis of serotonin under light conditions, and serotonin changed to the oxidized form via hydrogen peroxide produced by light. The dramatic increase in serotonin, which has a high antioxidant activity, suppressed leaf damage outside the halo, blocked expansion of the browning area and attenuated inhibition of plant growth. These results suggest that serotonin helps to reduce biotic stress in the plant by acting as a scavenger of oxygen radicals to protect uninfected tissues from oxidative damage caused by the HR. The deposition of its oxide at the HR lesion is observed as lesion browning.


Subject(s)
Abscisic Acid/metabolism , Magnaporthe/physiology , Oryza/physiology , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Serotonin/metabolism , Host-Pathogen Interactions , Hydrogen Peroxide/metabolism , Oryza/genetics , Oryza/immunology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/physiology , Reactive Oxygen Species/metabolism , Stress, Physiological
6.
Plant Mol Biol ; 89(3): 293-307, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26319516

ABSTRACT

Post-transcriptional gene regulation by RNA recognition motif (RRM) proteins through binding to cis-elements in the 3'-untranslated region (3'-UTR) is widely used in eukaryotes to complete various biological processes. Rice MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2) is the RRM protein that functions in the transition to meiosis in proper timing. The MEL2 RRM preferentially associated with the U-rich RNA consensus, UUAGUU[U/A][U/G][A/U/G]U, dependently on sequences and proportionally to MEL2 protein amounts in vitro. The consensus sequences were located in the putative looped structures of the RNA ligand. A genome-wide survey revealed a tendency of MEL2-binding consensus appearing in 3'-UTR of rice genes. Of 249 genes that conserved the consensus in their 3'-UTR, 13 genes spatiotemporally co-expressed with MEL2 in meiotic flowers, and included several genes whose function was supposed in meiosis; such as Replication protein A and OsMADS3. The proteome analysis revealed that the amounts of small ubiquitin-related modifier-like protein and eukaryotic translation initiation factor3-like protein were dramatically altered in mel2 mutant anthers. Taken together with transcriptome and gene ontology results, we propose that the rice MEL2 is involved in the translational regulation of key meiotic genes on 3'-UTRs to achieve the faithful transition of germ cells to meiosis.


Subject(s)
Gene Expression Regulation, Plant/physiology , Meiosis/physiology , Oryza/metabolism , Plant Proteins/metabolism , RNA, Plant/metabolism , 3' Untranslated Regions/physiology , Oryza/genetics , Plant Proteins/genetics , RNA, Plant/chemistry , RNA, Plant/genetics , Uracil/chemistry
7.
Cell ; 162(3): 527-39, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26232223

ABSTRACT

About 12,000 years ago in the Near East, humans began the transition from hunter-gathering to agriculture-based societies. Barley was a founder crop in this process, and the most important steps in its domestication were mutations in two adjacent, dominant, and complementary genes, through which grains were retained on the inflorescence at maturity, enabling effective harvesting. Independent recessive mutations in each of these genes caused cell wall thickening in a highly specific grain "disarticulation zone," converting the brittle floral axis (the rachis) of the wild-type into a tough, non-brittle form that promoted grain retention. By tracing the evolutionary history of allelic variation in both genes, we conclude that spatially and temporally independent selections of germplasm with a non-brittle rachis were made during the domestication of barley by farmers in the southern and northern regions of the Levant, actions that made a major contribution to the emergence of early agrarian societies.


Subject(s)
Biological Evolution , Hordeum/physiology , Seed Dispersal , Amino Acid Sequence , Hordeum/anatomy & histology , Hordeum/genetics , Molecular Sequence Data , Phenotype , Plant Proteins/chemistry , Plant Proteins/genetics , Sequence Alignment
8.
Rice (N Y) ; 8(1): 59, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26206757

ABSTRACT

BACKGROUND: Macronutrients are pivotal elements for proper plant growth and development. Although extensive gene expression profiling revealed a large number of genes differentially expressed under various nutrient deprivation, characterization of these genes has never been fully explored especially in rice. Coexpression network analysis is a useful tool to elucidate the functional relationships of genes based on common expression. Therefore, we performed microarray analysis of rice shoot under nitrogen (N), phosphorus (P), and potassium (K) deficiency conditions. Moreover, we conducted a large scale coexpression analysis by integrating the data with previously generated gene expression profiles of organs and tissues at different developmental stages to obtain a global view of gene networks associated with plant response to nutrient deficiency. RESULTS: We statistically identified 5400 differentially expressed genes under the nutrient deficiency treatments. Subsequent coexpression analysis resulted in the extraction of 6 modules (groups of highly interconnected genes) with distinct gene expression signatures. Three of these modules comprise mostly of downregulated genes under N deficiency associated with distinct functions such as development of immature organs, protein biosynthesis and photosynthesis in chloroplast of green tissues, and fundamental cellular processes in all organs and tissues. Furthermore, we identified one module containing upregulated genes under N and K deficiency conditions, and a number of genes encoding protein kinase, kinase-like domain containing protein and nutrient transporters. This module might be particularly involved in adaptation to nutrient deficiency via phosphorylation-mediated signal transduction and/or post-transcriptional regulation. CONCLUSIONS: Our study demonstrated that large scale coexpression analysis is an efficient approach in characterizing the nutrient response genes based on biological functions and could provide new insights in understanding plant response to nutrient deficiency.

9.
Plant Cell Physiol ; 56(1): 116-25, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25378689

ABSTRACT

Gene targeting (GT) is a technique used to modify endogenous genes in target genomes precisely via homologous recombination (HR). Although GT plants are produced using genetic transformation techniques, if the difference between the endogenous and the modified gene is limited to point mutations, GT crops can be considered equivalent to non-genetically modified mutant crops generated by conventional mutagenesis techniques. However, it is difficult to guarantee the non-incorporation of DNA fragments from Agrobacterium in GT plants created by Agrobacterium-mediated GT despite screening with conventional Southern blot and/or PCR techniques. Here, we report a comprehensive analysis of herbicide-tolerant rice plants generated by inducing point mutations in the rice ALS gene via Agrobacterium-mediated GT. We performed genome comparative genomic hybridization (CGH) array analysis and whole-genome sequencing to evaluate the molecular composition of GT rice plants. Thus far, no integration of Agrobacterium-derived DNA fragments has been detected in GT rice plants. However, >1,000 single nucleotide polymorphisms (SNPs) and insertion/deletion (InDels) were found in GT plants. Among these mutations, 20-100 variants might have some effect on expression levels and/or protein function. Information about additive mutations should be useful in clearing out unwanted mutations by backcrossing.


Subject(s)
Genome, Plant/genetics , Herbicides/pharmacology , Oryza/genetics , Acetolactate Synthase/genetics , Agrobacterium/genetics , Comparative Genomic Hybridization , Crops, Agricultural , Gene Targeting , High-Throughput Nucleotide Sequencing , Oryza/drug effects , Plant Proteins/genetics , Plants, Genetically Modified , Point Mutation , Sequence Analysis, DNA
10.
J Exp Bot ; 65(17): 4795-806, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24913626

ABSTRACT

Internal aeration is crucial for root growth in waterlogged soil. A barrier to radial oxygen loss (ROL) can enhance long-distance oxygen transport via the aerenchyma to the root tip; a higher oxygen concentration at the apex enables root growth into anoxic soil. The ROL barrier is formed within the outer part of roots (OPR). Suberin and/or lignin deposited in cell walls are thought to contribute to the barrier, but it is unclear which compound is the main constituent. This study describes gene expression profiles during ROL barrier formation in rice roots to determine the relative responses of suberin and/or lignin biosyntheses for the barrier. OPR tissues were isolated by laser microdissection and their transcripts were analysed by microarray. A total of 128 genes were significantly up- or downregulated in the OPR during the barrier formation. Genes associated with suberin biosynthesis were strongly upregulated, whereas genes associated with lignin biosynthesis were not. By an ab initio analysis of the promoters of the upregulated genes, the putative cis-elements that could be associated with transcription factors, WRKY, AP2/ERF, NAC, bZIP, MYB, CBT/DREB, and MADS, were elucidated. They were particularly associated with the expression of transcription factor genes containing WRKY, AP2, and MYB domains. A semiquantitative reverse-transcription PCR analysis of genes associated with suberin biosynthesis (WRKY, CYP, and GPAT) confirmed that they were highly expressed during ROL barrier formation. Overall, these results suggest that suberin is a major constituent of the ROL barrier in roots of rice.


Subject(s)
Lignin/metabolism , Lipids/biosynthesis , Oryza/metabolism , Oxygen/metabolism , Cell Wall/metabolism , Microdissection , Oligonucleotide Array Sequence Analysis , Oryza/cytology , Oryza/genetics , Plant Roots/cytology , Plant Roots/metabolism
11.
Plant Cell Physiol ; 55(1): 30-41, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24151204

ABSTRACT

Strigolactones (SLs) are a group of phytohormones that control plant growth and development including shoot branching. Previous studies of the phenotypes of SL-related rice (Oryza sativa) dwarf (d) mutants demonstrated that SLs inhibit mesocotyl elongation by controlling cell division. Here, we found that the expression of cytokinin (CK)-responsive type-A RESPONSE REGULATOR (RR) genes was higher in d10-1 and d14-1 mutants than in the wild type. However, CK levels in mesocotyls of the d mutants were not very different from those in the wild type. On the other hand, application of a synthetic CK (kinetin) enhanced mesocotyl elongation in the d mutants and the wild type. d10-1 and d14-1 mesocotyls were more sensitive to CK than wild-type mesocotyls, suggesting that the up-regulation of the CK-responsive type-A RR genes and the higher elongation of mesocotyls in the d mutants are mainly due to the increased sensitivity of the d mutants to CK. Co-treatment with kinetin and a synthetic SL (GR24) confirmed the antagonistic functions of SL and CK on mesocotyl elongation. OsTCP5, which encodes a transcription factor belonging to the cell division-regulating TCP family, was also regulated by SL and CK and its expression was negatively correlated with mesocotyl length. These findings suggest that OsTCP5 contributes to the SL- and CK-controlled mesocotyl elongation in darkness.


Subject(s)
Cotyledon/growth & development , Cytokinins/pharmacology , Darkness , Lactones/pharmacology , Oryza/drug effects , Oryza/growth & development , Gene Expression Regulation, Plant/drug effects , Kinetin/pharmacology , Mutation/genetics , Oryza/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
12.
Plant Cell Physiol ; 54(11): 1791-802, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24089432

ABSTRACT

Using co-expression network analysis, we identified 123 transcription factors (TFs) as candidate secondary cell wall regulators in rice. To validate whether these TFs are associated with secondary cell wall formation, six TF genes belonging to the MYB, NAC or homeodomain-containing TF families were overexpressed or downregulated in rice. With the exception of OsMYB58/63-RNAi plants, all transgenic plants showed phenotypes possibly related to secondary cell wall alteration, such as dwarfism, narrow and dark green leaves, and also altered rice cinnamyl alcohol dehydrogenase 2 (OsCAD2) gene expression and lignin content. These results suggest that many of the 123 candidate secondary cell wall-regulating TFs are likely to function in secondary cell wall formation in rice. Further analyses were performed for the OsMYB55/61 and OsBLH6 TFs, the former being a TF in which the Arabidopsis ortholog is known to participate in lignin biosynthesis (AtMYB61) and the latter being one for which no previous involvement in cell wall formation has been reported even in Arabidopsis (BLH6). OsMYB55/61 and OsBLH6-GFP fusion proteins localized to the nucleus of onion epidermal cells. Moreover, expression of a reporter gene driven by the OsCAD2 promoter was enhanced in rice calli when OsMYB55/61 or OsBLH6 was transiently expressed, demonstrating that they function in secondary cell wall formation. These results show the validity of identifying potential secondary cell wall TFs in rice by the use of rice co-expression network analysis.


Subject(s)
Cell Wall/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Transcription Factors/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Cellulose/metabolism , Gene Expression , Genes, Reporter , Lignin/analysis , Lignin/metabolism , Onions/cytology , Onions/enzymology , Onions/genetics , Oryza/cytology , Oryza/metabolism , Phenotype , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/cytology , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Recombinant Fusion Proteins , Transcription Factors/metabolism
13.
Plant Cell Physiol ; 54(11): 1803-21, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24089433

ABSTRACT

The plant secondary cell wall is the major source of lignocellulosic biomass, a renewable energy resource that can be used for bioethanol production. To comprehensively identify transcription factors (TFs), glycosyltransferase (GT) and glycosyl hydrolase (GH) involved in secondary cell wall formation in rice (Oryza sativa), co-expression network analysis was performed using 68 microarray data points for different rice tissues and stages. In addition to rice genes encoding orthologs of Arabidopsis thaliana TFs known to regulate secondary cell wall formation, the network analysis suggested many novel TF genes likely to be involved in cell wall formation. In the accompanying paper (Hirano et al.), several of these TFs are shown to be involved in rice secondary cell wall formation. Based on a comparison of the rice and Arabidopsis networks, TFs were classified as common to both species or specific to each plant species, suggesting that in addition to a common transcriptional regulatory mechanism of cell wall formation, the two plants may also use species-specific groups of TFs during secondary wall formation. Similarly, genes encoding GT and GH were also classified as genes showing species-common or species-specific expression patterns. In addition, genes for primary or secondary cell wall formation were also suggested. The list of rice TF, GT and GH genes provides an opportunity to unveil the regulation of secondary cell wall formation in grasses, leading to optimization of the cell wall for biofuel production.


Subject(s)
Cell Wall/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Plant Proteins/genetics , Gene Expression Profiling , Gene Regulatory Networks , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Oligonucleotide Array Sequence Analysis , Organ Specificity , Oryza/cytology , Oryza/metabolism , Phylogeny , Plant Proteins/metabolism , Plant Stems/cytology , Plant Stems/genetics , Plant Stems/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Plant Cell Physiol ; 54(12): 2011-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24068795

ABSTRACT

Arabidopsis thaliana BOR1 was the first boron (B) transporter identified in living systems. There are four AtBOR1-like genes, OsBOR1, 2, 3 and 4, present in the rice genome. We characterized the activity, expression and physiological function of OsBOR4. OsBOR4 is an active efflux transporter of B. Quantitative PCR analysis and OsBOR4 promoter-green fluorescent protein (GFP) fusion revealed that OsBOR4 was both highly and specifically expressed in pollen. We obtained five Tos17 insertion mutants of osbor4. The pollen grains were viable and development of floral organs was normal in the homozygous osbor4 mutants. We observed that in all Tos17 insertion lines tested, the frequency of osbor4 homozygous plants was lower than expected in the progeny of self-fertilized heterozygous plants. These results establish that OsBOR4 is essential for normal reproductive processes. Pollen from osbor4 homozygous plants elongated fewer tubes on wild-type stigmas, and tube elongation of mutant pollen was less efficient compared with the wild-type pollen, suggesting reduced competence of osbor4 mutant pollen. The reduced competence of mutant pollen was further supported by the crosses of independent Tos17-inserted alleles of OsBOR4. Our results suggest that OsBOR4, a boron efflux transporter, is required for normal pollen germination and/or tube elongation.


Subject(s)
Boron/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Pollen/metabolism , Fertilization/genetics , Fertilization/physiology , Gene Expression Regulation, Plant , Oryza/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics
15.
Nat Genet ; 45(9): 1097-102, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23913002

ABSTRACT

The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.


Subject(s)
Droughts , Genes, Plant , Oryza/growth & development , Oryza/genetics , Plant Roots/growth & development , Plant Roots/genetics , Quantitative Trait Loci , Adaptation, Biological/genetics , Gene Expression Regulation, Plant/drug effects , Gene Order , Genotype , Molecular Sequence Data , Phenotype , Plant Growth Regulators/pharmacology , Plant Roots/cytology
16.
Plant Signal Behav ; 8(6): e24409, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23603969

ABSTRACT

Deficiency of the three essential macronutrients, nitrogen, phosphorus and potassium, leads to large reduction in crop growth and yield. To characterize the molecular genetic basis of adaptation to macronutrient deprivation, we performed microarray analysis of rice root at 6 and 24 h after nitrogen, phosphorus and potassium deficiency treatments. The transcriptome response to nitrogen depletion occurred more rapidly than corresponding responses to phosphorus and potassium deprivation. We identified several genes important for response and adaptation to each nutrient deficiency. Furthermore, we found that signaling via reactive oxygen species is a common feature in response to macronutrient deficiency and signaling via jasmonic acid is associated with potassium depletion response. These results will facilitate deeper understanding of nutrient utilization of plants.


Subject(s)
Nitrogen/metabolism , Oryza/metabolism , Phosphorus/metabolism , Plant Roots/metabolism , Potassium/metabolism , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Transcriptome
17.
Plant Physiol ; 162(2): 663-74, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23580596

ABSTRACT

Rice (Oryza sativa) glutelins are synthesized on the endoplasmic reticulum as a precursor, which are then transported via the Golgi to protein storage vacuoles (PSVs), where they are proteolytically processed into acidic and basic subunits. The glutelin precursor mutant6 (glup6) accumulates abnormally large amounts of proglutelin. Map-base cloning studies showed that glup6 was a loss-of-function mutant of guanine nucleotide exchange factor (GEF), which activates Rab GTPase, a key regulator of membrane trafficking. Immunofluorescence studies showed that the transport of proglutelins and α-globulins to PSV was disrupted in glup6 endosperm. Secreted granules of glutelin and α-globulin were readily observed in young glup6 endosperm, followed by the formation of large dilated paramural bodies (PMBs) containing both proteins as the endosperm matures. The PMBs also contained membrane biomarkers for the Golgi and prevacuolar compartment as well as the cell wall component, ß-glucan. Direct evidence was gathered showing that GLUP6/GEF activated in vitro GLUP4/Rab5 as well as several Arabidopsis (Arabidopsis thaliana) Rab5 isoforms to the GTP-bound form. Therefore, loss-of-function mutations in GEF or Rab5 disrupt the normal transport of proglutelin from the Golgi to PSVs, resulting in the initial extracellular secretion of these proteins followed, in turn, by the formation of PMBs. Overall, our results indicate that GLUP6/GEF is the activator of Rab5 GTPase and that the cycling of GTP- and GDP-bound forms of this regulatory protein is essential for the intracellular transport of proglutelin and α-globulin from the Golgi to PSVs and in the maintenance of the general structural organization of the endomembrane system in rice seeds.


Subject(s)
Endosperm/metabolism , Glutens/metabolism , Golgi Apparatus/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Oryza/metabolism , Vacuoles/metabolism , Chromosome Mapping , Endosperm/genetics , Endosperm/ultrastructure , Genetic Complementation Test , Glutens/genetics , Golgi Apparatus/genetics , Guanine Nucleotide Exchange Factors/genetics , Microscopy, Electron, Transmission , Mutation , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Precursors/genetics , Protein Precursors/metabolism , Protein Transport/genetics , Vacuoles/genetics , rab5 GTP-Binding Proteins
18.
Plant J ; 74(4): 652-62, 2013 May.
Article in English | MEDLINE | ID: mdl-23432654

ABSTRACT

Yellowing/chlorophyll breakdown is a prominent phenomenon in leaf senescence, and is associated with the degradation of chlorophyll - protein complexes. From a rice mutant population generated by ionizing radiation, we isolated nyc4-1, a stay-green mutant with a defect in chlorophyll breakdown during leaf senescence. Using gene mapping, nyc4-1 was found to be linked to two chromosomal regions. We extracted Os07g0558500 as a candidate for NYC4 via gene expression microarray analysis, and concluded from further evidence that disruption of the gene by a translocation-related event causes the nyc4 phenotype. Os07g0558500 is thought to be the ortholog of THF1 in Arabidopsis thaliana. The thf1 mutant leaves show variegation in a light intensity-dependent manner. Surprisingly, the Fv /Fm value remained high in nyc4-1 during the dark incubation, suggesting that photosystem II retained its function. Western blot analysis revealed that, in nyc4-1, the PSII core subunits D1 and D2 were significantly retained during leaf senescence in comparison with wild-type and other non-functional stay-green mutants, including sgr-2, a mutant of the key regulator of chlorophyll degradation SGR. The role of NYC4 in degradation of chlorophyll and chlorophyll - protein complexes during leaf senescence is discussed.


Subject(s)
Chlorophyll Binding Proteins/metabolism , Gene Expression Regulation, Plant , Light , Oryza/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cellular Senescence , Chlorophyll/metabolism , Chromosome Mapping , Darkness , Gene Expression Profiling , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Oligonucleotide Array Sequence Analysis , Oryza/physiology , Oryza/radiation effects , Phenotype , Photosystem II Protein Complex/metabolism , Pigments, Biological/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Proteolysis , Reactive Oxygen Species/metabolism , Recombinant Fusion Proteins , Translocation, Genetic
19.
Proc Natl Acad Sci U S A ; 110(2): 767-72, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23267064

ABSTRACT

Inflorescence structures result from the activities of meristems, which coordinate both the renewal of stem cells in the center and organ formation at the periphery. The fate of a meristem is specified at its initiation and changes as the plant develops. During rice inflorescence development, newly formed meristems acquire a branch meristem (BM) identity, and can generate further meristems or terminate as spikelets. Thus, the form of rice inflorescence is determined by a reiterative pattern of decisions made at the meristems. In the dominant gain-of-function mutant tawawa1-D, the activity of the inflorescence meristem (IM) is extended and spikelet specification is delayed, resulting in prolonged branch formation and increased numbers of spikelets. In contrast, reductions in TAWAWA1 (TAW1) activity cause precocious IM abortion and spikelet formation, resulting in the generation of small inflorescences. TAW1 encodes a nuclear protein of unknown function and shows high levels of expression in the shoot apical meristem, the IM, and the BMs. TAW1 expression disappears from incipient spikelet meristems (SMs). We also demonstrate that members of the SHORT VEGETATIVE PHASE subfamily of MADS-box genes function downstream of TAW1. We thus propose that TAW1 is a unique regulator of meristem activity in rice and regulates inflorescence development through the promotion of IM activity and suppression of the phase change to SM identity.


Subject(s)
Gene Expression Regulation, Plant/physiology , Inflorescence/anatomy & histology , Meristem/growth & development , Oryza/physiology , Plant Proteins/metabolism , DNA Transposable Elements/genetics , Fluorescence , Gene Expression Profiling , In Situ Hybridization , Inflorescence/metabolism , MADS Domain Proteins/metabolism , Meristem/metabolism , Nuclear Proteins/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
20.
Nucleic Acids Res ; 41(Database issue): D1206-13, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23180765

ABSTRACT

A wide range of resources on gene expression profiling enhance various strategies in plant molecular biology particularly in characterization of gene function. We have updated our gene expression profile database, RiceXPro (http://ricexpro.dna.affrc.go.jp/), to provide more comprehensive information on the transcriptome of rice encompassing the entire growth cycle and various experimental conditions. The gene expression profiles are currently grouped into three categories, namely, 'field/development' with 572 data corresponding to 12 data sets, 'plant hormone' with 143 data corresponding to 13 data sets and 'cell- and tissue-type' comprising of 38 microarray data. In addition to the interface for retrieving expression information of a gene/genes in each data set, we have incorporated an interface for a global approach in searching an overall view of the gene expression profiles from multiple data sets within each category. Furthermore, we have also added a BLAST search function that enables users to explore expression profile of a gene/genes with similarity to a query sequence. Therefore, the updated version of RiceXPro can be used more efficiently to survey the gene expression signature of rice in sufficient depth and may also provide clues on gene function of other cereal crops.


Subject(s)
Databases, Genetic , Gene Expression Profiling , Oryza/genetics , Internet , Oligonucleotide Array Sequence Analysis , Oryza/growth & development , Oryza/metabolism , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Alignment , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...