Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 300: 134589, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35421447

ABSTRACT

Streambeds are an integral part of the river ecosystem. They provide habitat to a vast array of aquatic and benthic organisms as well as facilitate the bio-degradation and transformation of organic matter and vital nutrients. Increasing anthropogenic influence introduces multiple stressors to the stream networks resulting in pollution of streambeds, which in turn, have detrimental effects on the overall stream ecosystem health. There is a huge gap in the current understanding of streambed pollution and its impacts, and the widely practiced streambed pollution mitigation strategies lack a holistic approach. In this comprehensive review, we first synthesize the state-of-the-art knowledge of conventional and emerging forms of contaminants, their overall impacts on stream ecosystem functions, and present future directions to comprehend the problem of streambed pollution. We highlight that fine sediments and plastics (found especially in urban streambeds) are among the major physical pollutants causing streambed pollution and the chemical pollutants generally comprise hydrophobic compounds including various legacy contaminants such as polychlorinated biphenyl (PCB), dichlorodiphenyltrichloroethane (DDT), a wide range of pesticides and a variety of heavy metals. Moreover, in recent years, highly polar and hydrophilic emerging contaminants such as micro-plastics, pharmaceutical waste and personal care products have been identified in riverbeds and streambeds across the world. We stress that the impacts of streambed pollution have been largely studied with discipline-driven perspectives amongst which the ecological impacts have received a lot of attention in the past. To present a comprehensive outlook, this review also synthesizes and discusses most of the understudied hydrological, geomorphological and biochemical impacts of different forms of streambed pollution. Subsequently, we also present a global inventory by compiling information from the published literature to highlight the status of streambed pollution around the globe. In the end, we endorse the positive and negative aspects of the current impact assessment methodologies and also highlight various physical, chemical and biological remediation measures that could be undertaken to alleviate streambed pollution.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring/methods , Environmental Pollution , Plastics , Rivers/chemistry , Water Pollutants, Chemical/analysis
2.
Environ Sci Pollut Res Int ; 24(32): 24765-24789, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28988330

ABSTRACT

The estimation and modeling of streambed hydraulic conductivity (K) is an emerging interest due to its connection to water quality, aquatic habitat, and groundwater recharge. Existing research has found ways to sample and measure K at specific sites and with laboratory tests. The challenge undertaken was to review progress, relevance, complexity in understanding and modeling via statistical and geostatistical approaches, literature gaps, and suggestions toward future needs. This article provides an overview of factors and processes influencing streambed hydraulic conductivity (K) and its role in the stream-aquifer interaction. During our synthesis, we discuss the influence of geological, hydrological, biological, and anthropogenic factors that lead to variability of streambed substrates. Literature examples document findings to specific sites that help to portray the role of streambed K and other interrelated factors in the modeling of hyporheic and groundwater flow systems. However, studies utilizing an integrated, comprehensive database are limited, restricting the ability of broader application and understanding. Examples of in situ and laboratory methods of estimating hydraulic conductivity suggest challenges in acquiring representative samples and comparing results, considering the anisotropy and heterogeneity of fluvial bed materials and geohydrological conditions. Arriving at realistic statistical and spatial inference based on field and lab data collected is challenging, considering the possible sediment sources, processes, and complexity. Recognizing that the K for a given particle size group includes several to many orders of magnitude, modeling of streambed K and groundwater interaction remain conceptual and experimental. Advanced geostatistical techniques offer a wide range of univariate or multi-variate interpolation procedures such as kriging and variogram analysis that can be applied to these complex systems. Research available from various studies has been instrumental in developing sampling options, recognizing the significance of fluvial dynamics, the potential for filtration, transfer, and storage of high-quality groundwater, and importance to aquatic habitat and refuge during extreme conditions. Efforts in the characterization of natural and anthropogenic conditions, substrate materials, sediment loading, colmation, and other details highlight the great complexity and perhaps need for a database to compile relevant data. The effects on streambed hydraulic conductivity due to anthropogenic disturbances (in-stream gravel mining, contaminant release, benthic activity, etc.) are the areas that still need focus. An interdisciplinary (hydro-geo-biological) approach may be necessary to characterize the magnitude and variability of streambed K and fluxes at local, regional scales.


Subject(s)
Geologic Sediments/analysis , Groundwater/analysis , Rivers , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...