Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 290(7): 4260-71, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25528375

ABSTRACT

The known mammalian glycerophosphodiester phosphodiesterases (GP-PDEs) hydrolyze glycerophosphodiesters. In this study, two novel members of the mammalian GP-PDE family, GDE4 and GDE7, were isolated, and the molecular basis of mammalian GP-PDEs was further explored. The GDE4 and GDE7 sequences are highly homologous and evolutionarily close. GDE4 is expressed in intestinal epithelial cells, spermatids, and macrophages, whereas GDE7 is particularly expressed in gastro-esophageal epithelial cells. Unlike other mammalian GP-PDEs, GDE4 and GDE7 cannot hydrolyze either glycerophosphoinositol or glycerophosphocholine. Unexpectedly, both GDE4 and GDE7 show a lysophospholipase D activity toward lysophosphatidylcholine (lyso-PC). We purified the recombinant GDE4 and GDE7 proteins and show that these enzymes can hydrolyze lyso-PC to produce lysophosphatidic acid (LPA). Further characterization of purified recombinant GDE4 showed that it can also convert lyso-platelet-activating factor (1-O-alkyl-sn-glycero-3-phosphocholine; lyso-PAF) to alkyl-LPA. These data contribute to our current understanding of mammalian GP-PDEs and of their physiological roles via the control of lyso-PC and lyso-PAF metabolism in gastrointestinal epithelial cells and macrophages.


Subject(s)
Lysophospholipids/metabolism , Phosphoric Diester Hydrolases/metabolism , Platelet Activating Factor/analogs & derivatives , Amino Acid Sequence , Animals , Blotting, Western , Cells, Cultured , In Situ Hybridization , Male , Mice , Mice, Inbred ICR , Mice, Obese , Microscopy, Fluorescence , Molecular Sequence Data , Phosphoric Diester Hydrolases/genetics , Phylogeny , Platelet Activating Factor/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...