Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 212(11): 1807-1818, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38639584

ABSTRACT

Drug-induced acute renal failure (ARF) is a public health concern that hinders optimal drug therapy. However, pathological mechanisms of drug-induced ARF remain to be elucidated. Here, we show that a pathological process of drug-induced ARF is mediated by proinflammatory cross-talk between kidney tubular cells and macrophages. Both polymyxin B and colistin, polypeptide antibiotics, frequently cause ARF, stimulated the ERK and NF-κB pathways in kidney tubular cells, and thereby upregulated M-CSF and MCP-1, leading to infiltration of macrophages into the kidneys. Thereafter, the kidney-infiltrated macrophages were exposed to polypeptide antibiotics, which initiated activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Interestingly, blockade of the NLRP3 activation clearly ameliorated the pathology of ARF induced by polypeptide antibiotics, suggesting that a combination of the distinct cellular responses to polypeptide antibiotics in kidney tubular cells and macrophages plays a key role in the pathogenesis of colistin-induced ARF. Thus, our results provide a concrete example of how drugs initiate ARF, which may give insight into the underlying pathological process of drug-induced ARF.


Subject(s)
Acute Kidney Injury , Anti-Bacterial Agents , Inflammasomes , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Mice , Inflammasomes/metabolism , Macrophages/immunology , Macrophages/metabolism , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Polymyxin B/pharmacology , Mice, Inbred C57BL , Colistin/adverse effects , Colistin/pharmacology , Peptides/pharmacology , Kidney Tubules/pathology , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Male , NF-kappa B/metabolism
2.
J Antibiot (Tokyo) ; 75(1): 29-39, 2022 01.
Article in English | MEDLINE | ID: mdl-34824374

ABSTRACT

Polymyxin B (PMB) is an essential antibiotic active against multidrug-resistant bacteria, such as multidrug-resistant Pseudomonas aeruginosa (MDRP). However, the clinical use of PMB is limited, because PMB causes serious side effects, such as nephrotoxicity and neurotoxicity, probably due to its cytotoxic activity. However, cytotoxic mechanisms of PMB are poorly understood. In this study, we found that macrophages are particularly sensitive to PMB, when compared with other types of cells, including fibroblasts and proximal tubule (PT) cells. Of note, PMB-induced necrosis of macrophages allowed passive release of high mobility group box 1 (HMGB1). Moreover, upon exposure of PMB to macrophages, the innate immune system mediated by the NLR family pyrin domain containing 3 (NLRP3) inflammasome that promotes the release of pro-inflammatory cytokines such as interleukin-1ß (IL-1ß) was stimulated. Interestingly, PMB-induced IL-1ß release occurred in the absence of the pore-forming protein gasdermin D (GSDMD), which supports the idea that PMB causes plasma membrane rupture accompanying necrosis. Emerging evidence has suggested that both HMGB1 and IL-1ß released from macrophages contribute to excessive inflammation that promote pathogenesis of various diseases, including nephrotoxicity and neurotoxicity. Therefore, these biochemical properties of PMB in macrophages may be associated with the induction of the adverse organ toxicity, which provides novel insights into the mechanisms of PMB-related side effects.


Subject(s)
Anti-Bacterial Agents/toxicity , Inflammation/chemically induced , Irritants/toxicity , Macrophages/drug effects , Polymyxin B/toxicity , Cell Line , Cell Membrane/pathology , Fibroblasts/drug effects , HMGB1 Protein/genetics , Humans , Immunity, Innate , Inflammasomes , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Necrosis , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism
3.
Cell Death Dis ; 12(1): 49, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33414419

ABSTRACT

Anticancer drug gefitinib causes inflammation-based side effects, such as interstitial pneumonitis. However, its mechanisms remain unknown. Here, we provide evidence that gefitinib elicits pro-inflammatory responses by promoting mature-interleukin-1ß (IL-1ß) and high-mobility group box 1 (HMGB1) release. Mitochondrial reactive oxygen species (mtROS) driven by gefitinib stimulated the formation of the NLRP3 (NACHT, LRR and PYD-containing protein 3) inflammasome, leading to mature-IL-1ß release. Notably, gefitinib also stimulated HMGB1 release, which is, however, not mediated by the NLRP3 inflammasome. On the other hand, gefitinib-driven mtROS promoted the accumulation of γH2AX, a hallmark of DNA damage, leading to the activation of poly (ADP-ribose) polymerase-1 (PARP-1) and subsequent active release of HMGB1. Together our results reveal the potential ability of gefitinib to initiate sterile inflammation via two distinct mechanisms, and identified IL-1ß and HMGB1 as key determinants of gefitinib-induced inflammation that may provide insights into gefitinib-induced interstitial pneumonitis.


Subject(s)
Gefitinib/therapeutic use , HMGB1 Protein/metabolism , Inflammation/chemically induced , Interleukin-1beta/metabolism , Protein Kinase Inhibitors/therapeutic use , Gefitinib/pharmacology , Humans , Protein Kinase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...