Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 20(10): 5066-5077, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37726201

ABSTRACT

Cubosomes are nanoparticles with bicontinuous cubic internal nanostructures that have been considered for use in drug delivery systems (DDS). However, their low structural stability is a crucial concern for medical applications. Herein, we investigated the use of a gemini surfactant, sodium dilauramidoglutamide lysine (DLGL), which is composed of two monomeric surfactants linked with a spacer to improve the structural stability of cubosomes prepared with phytantriol (PHY). Uniform nanosuspensions comprising a specific mixing ratio of DLGL and PHY in water prepared via ultrasonication were confirmed by using dynamic light scattering. Small-angle X-ray scattering and cryo-transmission electron microscopy revealed the formation of Pn3̅m cubosomes in a range of DLGL/PHY solid ratios between 1 and 3% w/w. By contrast, cubosome formation was not observed at DLGL/PHY solid ratios of 5% w/w or higher, suggesting that excess DLGL interfered with cubosome formation and caused them to transform into small unilamellar vesicles. The addition of phosphate-buffered saline to the nanosuspension caused aggregation when the solid ratio of DLGL/PHY was less than 5% w/w. However, Im3̅m cubosomes were obtained at solid ratios of DLGL/PHY of 6, 7.5, and 10% w/w. The lattice parameters of the Pn3̅m and Im3̅m cubosomes were approximately 7 and 11-13 nm, respectively. The lattice parameters of Im3̅m cubosomes were affected by the concentration of DLGL. Pn3̅m cubosomes were surprisingly stable for 4 weeks at both 25 and 5 °C. In conclusion, DLGL, a gemini surfactant, was found to act as a new stabilizer for PHY cubosomes at specific concentrations. Cubosomes composed of DLGL are stable under low-temperature storage conditions, such as in refrigerators, making them a viable option for heat-sensitive DDS.


Subject(s)
Drug Delivery Systems , Surface-Active Agents , Surface-Active Agents/chemistry , Fatty Alcohols/chemistry , Microscopy, Electron, Transmission , Particle Size
2.
J Pharm Sci ; 109(10): 2969-2974, 2020 10.
Article in English | MEDLINE | ID: mdl-32070703

ABSTRACT

We conducted a stability study of biodegradable and amphiphilic nanoparticles (NPs) consisting of phenylalanine-attached poly(γ-glutamic acid) for drug delivery to find the optimal formulation and define the optimal storage conditions using novel quantitative analytical methods. The stability of NP suspension and lyophilized NP powder manufactured by a dimethyl sulfoxide-based and an ethanol-based process was assessed under 5°C, 25°C/60% relative humidity and 40°C/75% relative humidity. The content of phenylalanine-attached poly(γ-glutamic acid), impurities, absolute molecular weight, appearance, clarity of solution, particle size, zeta potential, particle matter, osmolality, water content, and pH were evaluated as parameters of NP stability. Lyophilized NPs with trehalose showed better stability. The lyophilized NP formulation could therefore provide a stable and high-quality product for clinical studies and shows promise as an effective drug delivery system carrier. The cardiotoxicity of prospective impurities contained in NPs and reagents used in the manufacturing process with human-induced pluripotent stem cell-derived 3-dimensional cardiomyocyte tissues by centrifugation layer-by-layer technique was also evaluated. As a result, cardiotoxicity for NPs and reagents was not observed, and it was clarified that the potential risk to human safety from NPs is low. The applicability of the cardiotoxicity evaluation approaches with human-induced pluripotent stem cell-derived 3-dimensional cardiomyocyte tissues will be evaluated by centrifugation layer-by-layer technique.


Subject(s)
Induced Pluripotent Stem Cells , Nanoparticles , Cardiotoxicity , Glutamic Acid , Humans , Myocytes, Cardiac , Nanoparticles/toxicity , Polyglutamic Acid/analogs & derivatives , Polyglutamic Acid/toxicity , Prospective Studies
3.
Anal Bioanal Chem ; 410(18): 4445-4457, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29931574

ABSTRACT

A quantitative method of analyzing nanoparticles (NPs) for drug delivery is urgently required by researchers and industry. Therefore, we developed new quantitative analytical methods for biodegradable and amphiphilic NPs consisting of polymeric γ-PGA-Phe [phenylalanine attached to poly(γ-glutamic acid)] molecules. These γ-PGA-Phe NPs were completely dissociated into separate γ-PGA-Phe molecules by adding sodium dodecyl sulfate (SDS). The dissociated NPs were chromatographically separated to analyze parameters such as the γ-PGA-Phe content in the NPs, the impurities present [using reverse-phase (RP) HPLC with an ultraviolet (UV) detector], and the absolute MW [using size-exclusion chromatography (SEC) with refractive index detection (RI) and multiangle light scattering (MALS) detection, i.e., SEC-RI/MALS]. The chromatographic patterns of the NPs were equivalent to those of the component polymer (γ-PGA-Phe), and excellent chromatographic separation for the quantitative evaluation of NPs was achieved. To the best of our knowledge, this is the first report of the quantitative evaluation of NPs in the field of NP-based delivery systems. Furthermore, these methods were applied to optimize and evaluate the NP manufacturing process. The results showed that impurities were effectively removed from the γ-PGA-Phe during the manufacturing process, so the purity of the final γ-PGA-Phe NPs was enhanced. In addition, the appearance, clarity of solution, particle size, zeta potential, particle matter, osmolarity, and pH of the product were evaluated to ensure that the NPs were of the required quality. Our approach should prove useful for product and process characterization and quality control in the manufacture of NPs. γ-PGA-Phe NPs are known to be a powerful vaccine adjuvant, so they are expected to undergo clinical development into a practical drug-delivery system. The analytical methods established in this paper should facilitate the reliable and practical quality testing of NP products, thus aiding the clinical development of γ-PGA-Phe-based drug-delivery systems. Moreover, since these analytical methods employ commonly used reagents and chromatographic systems, the methods are expected to be applicable to other NP-based drug-delivery products too. Graphical abstract NPs were completely dissociated into separate γ-PGA-Phe polymeric molecules, which yielded a similar chromatogram to that seen for the NPs.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Phenylalanine/analogs & derivatives , Polyglutamic Acid/analogs & derivatives , Chromatography, Gel , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Freeze Drying , Polyglutamic Acid/chemistry , Sodium Dodecyl Sulfate/chemistry , Surface-Active Agents/chemistry , Suspensions
4.
J Pharm Biomed Anal ; 150: 460-468, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29294451

ABSTRACT

Amphiphilic graft copolymer consisting of poly(γ-glutamic acid) (γ-PGA) as the hydrophilic backbone and L-phenylalanine ethyl ester (Phe) as the hydrophobic side chain is an important biodegradable polymer with great potential in medical applications. In this research, we established analytical methods for the characterization and quality control of γ-PGA-graft-Phe (γ-PGA-Phe), which forms nanoparticles in aqueous solution, as a deployment platform in practical applications for vaccine adjuvants. The SEC-RI/MALS system, which uses size exclusion chromatography (SEC) coupled with a multi_angle light scattering (MALS) detector and refractive index (RI) detector, was developed to evaluate the characteristics of various types of polymers. By this method, it was indicated that absolute molecular weight (MW) should be used to measure the branch polymer. A gradient reversed phase HPLC (RP-HPLC) method was developed for the content of γ-PGA-Phe and the impurity levels to control product quality and safety. This quantitative approach could become key elements for identifying and characterizing γ-PGA-Phe. In addition, the degradation mechanism of γ-PGA-Phe was also identified as cleavage of main-chain of γ-PGA-Phe based on the stability study of γ-PGA-Phe in buffer solution with various pH values. The analytical developments described above will be important for use in both characterization and formulation design of biopolymers. Nanoparticles (NPs) composed of well-characterized biodegradable γ-PGA-Phe are expected to have a variety of potential clinical applications such as their use as drug and vaccine carriers.


Subject(s)
Absorbable Implants , Adjuvants, Immunologic/chemistry , Drug Carriers , Nanoparticles , Nanotechnology , Polyglutamic Acid/analogs & derivatives , Technology, Pharmaceutical/methods , Buffers , Chromatography, Gel , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Dynamic Light Scattering , Humidity , Hydrogen-Ion Concentration , Nanotechnology/standards , Polyglutamic Acid/chemistry , Quality Control , Technology, Pharmaceutical/standards , Temperature , Time Factors
5.
AAPS PharmSciTech ; 13(3): 949-60, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22752680

ABSTRACT

Nanoparticles, of the poorly water-soluble drug, itraconazole (ITZ), were produced by the Advanced Evaporative Precipitation into Aqueous Solution process (Advanced EPAS). This process combines emulsion templating and EPAS processing to provide improved control over the size distribution of precipitated particles. Specifically, oil-in-water emulsions containing the drug and suitable stabilizers are sprayed into a heated aqueous solution to induce precipitation of the drug in form of nanoparticles. The influence of processing parameters (temperature and volume of the heated aqueous solution; type of nozzle) and formulation aspects (stabilizer concentrations; total solid concentrations) on the size of suspended ITZ particles, as determined by laser diffraction, was investigated. Furthermore, freeze-dried ITZ nanoparticles were evaluated regarding their morphology, crystallinity, redispersibility, and dissolution behavior. Results indicate that a robust precipitation process was developed such that size distribution of dispersed nanoparticles was shown to be largely independent across the different processing and formulation parameters. Freeze-drying of colloidal dispersions resulted in micron-sized agglomerates composed of spherical, sub-300-nm particles characterized by reduced crystallinity and high ITZ potencies of up to 94% (w/w). The use of sucrose prevented particle agglomeration and resulted in powders that were readily reconstituted and reached high and sustained supersaturation levels upon dissolution in aqueous media.


Subject(s)
Chemical Precipitation , Chemistry, Pharmaceutical/methods , Itraconazole/chemical synthesis , Nanoparticles/chemistry , Water , Crystallization , Itraconazole/metabolism , Pharmaceutical Solutions/chemical synthesis , Pharmaceutical Solutions/metabolism , Solubility , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...