Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chirality ; 33(10): 685-702, 2021 10.
Article in English | MEDLINE | ID: mdl-34402557

ABSTRACT

Dynamic kinetic resolution (DKR) of unprotected amino acids (AAs), via intermediate formation of Ni(II) complexes, is currently a leading methodology for preparation of natural and tailor-made AAs in enantiomerically pure form. In this work, we conduct a comparative case study of synthetic performance of four different ligands in DKR of six AAs representing aryl-, benzyl-, alkyl-, and long alkyl-type derivatives. The results of this study allow for rational selection of ligand/AA type to develop a practical procedure for preparation of target enantiomerically pure AAs.


Subject(s)
Amino Acids , Nickel , Kinetics , Ligands , Stereoisomerism
2.
Free Radic Biol Med ; 174: 12-27, 2021 10.
Article in English | MEDLINE | ID: mdl-34324979

ABSTRACT

The knockout (KO) of the cystine transporter xCT causes ferroptosis, a type of iron-dependent necrotic cell death, in mouse embryonic fibroblasts, but this does not occur in macrophages. In this study, we explored the gene that supports cell survival under a xCT deficiency using a proteomics approach. Analysis of macrophage-derived peptides that were tagged with iTRAQ by liquid chromatography-mass spectrometry revealed a robust elevation in the levels of carnosine dipeptidase II (CNDP2) in xCT KO macrophages. The elevation in the CNDP2 protein levels was confirmed by immunoblot analyses and this elevation was accompanied by an increase in hydrolytic activity towards cysteinylglycine, the intermediate degradation product of glutathione after the removal of the γ-glutamyl group, in xCT KO macrophages. Supplementation of the cystine-free media of Hepa1-6 cells with glutathione or cysteinylglycine extended their survival, whereas the inclusion of bestatin, an inhibitor of CNDP2, counteracted the effects of these compounds. We established CNDP2 KO mice by means of the CRISPR/Cas9 system and found a decrease in dipeptidase activity in the liver, kidney, and brain. An acetaminophen overdose (350 mg/kg) showed not only aggravated hepatic damage but also renal injury in the CNDP2 KO mice, which was not evident in the wild-type mice that were receiving the same dose. The aggravated renal damage in the CNDP2 KO mice was consistent with the presence of abundant levels of CNDP2 in the kidney, the organ prone to developing ferroptosis. These collective data imply that cytosolic CNDP2, in conjugation with the removal of the γ-glutamyl group, recruits Cys from extracellular GSH and supports redox homeostasis of cells, particularly in epithelial cells of proximal tubules that are continuously exposed to oxidative insult from metabolic wastes that are produced in the body.


Subject(s)
Carnosine , Dipeptidases , Animals , Cysteine , Dipeptidases/genetics , Fibroblasts , Glutathione , Mice
4.
Anal Biochem ; 578: 13-22, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31059677

ABSTRACT

γ-Glutamylpeptides are largely produced via the action of γ-glutamylcysteine synthetase or γ-glutamyltransferase (GGT). GGT transfers the γ-glutamyl moiety from glutathione (GSH) and other γ-glutamyl compounds to amino acids, peptides, or water. A conventional GGT assay employs a synthetic donor substrate, which facilitates monitoring cleavage activity by means of colorimetric analyses but provides no information on the resulting γ-glutamylpeptides. In this study, we report on the use of liquid chromatography-mass spectrometry (LC-MS) to quantitatively measure the levels of 21 γ-glutamylpeptides including GSH and 45 amino acids, including Cys. Authentic compounds consisting of 17 chemically synthesized and commercially available 4 γ-glutamylpeptides were adopted as references. We applied this method to the characterization of γ-glutamylpeptides in blood plasma and livers of mice that had been treated with an overdose of acetaminophen. The established LC-MS-based assay was found to be useful for characterizing the γ-glutamylation reaction under in vivo and in vitro conditions and was clearly helpful for understanding the physiological significance of the production of γ-glutamylpeptides.


Subject(s)
Chromatography, Liquid/methods , Kidney/metabolism , Liver/metabolism , Mass Spectrometry/methods , Peptides/analysis , gamma-Glutamyltransferase/metabolism , Animals , Glutathione/metabolism , Mice , Mice, Inbred C57BL
5.
Cell Rep ; 21(9): 2447-2457, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29186683

ABSTRACT

Apoptosis signal-regulating kinase 1 (ASK1) is an oxidative stress-responsive kinase that is regulated by various interacting molecules and post-translational modifications. However, how these molecules and modifications cooperatively regulate ASK1 activity remains largely unknown. Here, we showed that tripartite motif 48 (TRIM48) orchestrates the regulation of oxidative stress-induced ASK1 activation. A pull-down screen identified a TRIM48-interacting partner, protein arginine methyltransferase 1 (PRMT1), which negatively regulates ASK1 activation by enhancing its interaction with thioredoxin (Trx), another ASK1-negative regulator. TRIM48 facilitates ASK1 activation by promoting K48-linked polyubiquitination and degradation of PRMT1. TRIM48 knockdown suppressed oxidative stress-induced ASK1 activation and cell death, whereas forced expression promoted cancer cell death in mouse xenograft model. These results indicate that TRIM48 facilitates oxidative stress-induced ASK1 activation and cell death through ubiquitination-dependent degradation of PRMT1. This study provides a cell death mechanism fine-tuned by the crosstalk between enzymes that engage various types of post-translational modifications.


Subject(s)
Cell Death/physiology , MAP Kinase Kinase Kinase 5/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , Tripartite Motif Proteins/metabolism , Apoptosis/genetics , Apoptosis/physiology , Cell Death/genetics , Cell Line , Humans , MAP Kinase Kinase Kinase 5/genetics , Oxidative Stress/genetics , Oxidative Stress/physiology , Protein-Arginine N-Methyltransferases/genetics , Repressor Proteins/genetics , Tripartite Motif Proteins/genetics , Ubiquitin/metabolism , Ubiquitination/genetics , Ubiquitination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...