Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 97(13): 4562-4570, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28337748

ABSTRACT

BACKGROUND: In recent years, agro-bionanotechnology has paved the way towards revolutionizing current practices in the food and agricultural fields. In the present study, the effect of copper nanoparticles (CuNPs) alone and in combination with the growth-promoting fungus Piriformospora indica on 2-week-old seedlings of Cajanus cajan was evaluated. Gelatin-coated stable CuNPs were synthesized by the chemical reduction method using hydrazine hydrate as a reducing agent. RESULTS: CuNPs were characterized by using UV-visible spectroscopy, zeta potential measurement and transmission electron microscopy. The nanoparticles were found to be quite spherical with a diameter within the range 40 ± 10 nm. After the application of CuNPs and P. indica to the host plant C. cajan, the vitality of plants was determined using a Handy-PEA (plant efficiency analyzer) instrument. Handy-PEA analysis (which measures chlorophyll a fluorescence) indicated that seedlings inoculated with a combination of CuNPs and P. indica were the healthiest and also showed maximum vitality as compared to seedlings inoculated with CuNPs or P. indica alone. CONCLUSION: These results suggest that CuNPs in combination with P. indica can serve as a nanobiofertilizer for enhancement of the growth and productivity of C. cajan. © 2017 Society of Chemical Industry.


Subject(s)
Basidiomycota/physiology , Cajanus/drug effects , Cajanus/microbiology , Copper/pharmacology , Endophytes/physiology , Cajanus/growth & development , Copper/chemistry , Nanoparticles/chemistry , Plant Roots/growth & development , Plant Roots/microbiology , Seedlings/drug effects , Seedlings/growth & development , Seedlings/microbiology
2.
Biotechnol Prog ; 31(2): 557-65, 2015.
Article in English | MEDLINE | ID: mdl-25607830

ABSTRACT

Nanobiotechnological application of copper nanoparticles has paved the way for advancement in agriculture owing to its bactericidal and fungicidal activities. Recently, researchers have focussed on bioinspired synthesis of copper nanoparticles as a viable alternative to existing physicochemical techniques. For the commercialization of nanocopper, the toxicity evaluation is a major issue. In this context, Citrus medica (L.) fruit extract-mediated copper nanoparticles were synthesized and its different concentrations (10, 20, 40, 60, 80, and 100 µg mL(-1) ) were evaluated for its effect on actively dividing cells of Allium cepa. The study clearly revealed that copper nanoparticles increased mitotic index up to the concentration of 20 µg mL(-1) . In addition, a gradual decline in mitotic index and increase in abnormality index was observed as the concentration of copper nanoparticles and treatment duration were increased. Aberrations in chromosomal behavior such as sticky and disturbed chromosomes in metaphase and anaphase, c-metaphase, bridges, laggard, disturbed telophase, and vacuolated nucleus were also observed.


Subject(s)
Cell Proliferation/drug effects , Copper/toxicity , Metal Nanoparticles/toxicity , Mitosis/drug effects , Onions/cytology , Cells, Cultured , Chromosome Aberrations/chemically induced , Copper/chemistry , Copper/metabolism , Metal Nanoparticles/chemistry , Mitotic Index , Plant Roots/cytology
3.
Int J Med Mushrooms ; 17(10): 921-32, 2015.
Article in English | MEDLINE | ID: mdl-26756184

ABSTRACT

Ganoderma spp. are very important therapeutic mushrooms and have been used traditionally for 4000 years in the treatment of various human disorders. Different species of Ganoderma possess bioactive compounds, which have already demonstrated antiviral, antibacterial, and antifungal activities. Various bioactive compounds such as triterpenoids, colossolactones, and polysaccharides, which are responsible for the antimicrobial potential of the genus, are discussed here in detail. Some Ganoderma spp. have been reported to be potential agents for the synthesis of metal nanoparticles. These nanoparticles have demonstrated antimicrobial activity and also are reviewed herein. The main aim of this review is to discuss the possible use of Ganoderma extracts and their active principles in antimicrobial therapy.


Subject(s)
Anti-Infective Agents , Ganoderma/chemistry , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...