Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(5): 5965-5976, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38263906

ABSTRACT

The development of low-cost, efficient catalysts for electrocatalytic water splitting to generate green hydrogen is a hot topic among researchers. Herein, we have developed a highly efficient heterostructure of CoCr-LDH on NiO on nickel foam (NF) for the first time. The preparation strategy follows the simple annealing of a cleaned NF without using any Ni salt precursor, followed by the growth of CoCr-LDH nanosheets over the surface-oxidized NF. The CoCr-LDH/NiO/NF catalyst shows excellent electrocatalytic activity and stability toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in a 1 M KOH solution. For OER, only 253 mV and for HER, only 185 mV overpotentials are required to attain a 50 mA cm-2 current density. Also, the long-term stability of both the OER and HER for 60 h proves its robustness. The turnover frequency value for the OER increased 1.85 times after the heterostructure formation compared to bare CoCr-LDH. The calculated Faradaic efficiency values of 97.4 and 94.75% for the OER and HER revealed the high intrinsic activity of the heterostructure. Moreover, the heterostructure only needs 1.57 V of cell voltage when acting as both the anode and the cathode to achieve a 10 mA cm-2 current density. The long-term stability of 60 h for the total water-splitting process proves its excellent performance. Several systematic pre- and post-experiment characterizations prove its durable nature. These excellent OER and HER activities and stabilities are attributed to the surface-modified electronic structure and thin nanosheet-like surface morphology of the heterostructure. The thin, wide, and modified surface of the catalyst facilitates the diffusion of ions (reactants) and gas molecules (products) at the electrode/electrolyte interface. Furthermore, electron transfer from n-type CoCr-LDH to p-type NiO results in enhanced electronic conductivity. This study demonstates the effective design of a self-supported heterostructure with minimal synthetic steps to generate a bifunctional electrocatalyst for water splitting, contributing to the greater cause of green hydrogen economy.

2.
Inorg Chem ; 61(51): 21055-21066, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36523209

ABSTRACT

Water electrolysis encounters a challenging problem in designing a highly efficient, long durable, non-noble metal-free electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, in our work, a two-step hydrothermal reaction was performed to construct a hierarchal NiFe-layer double hydroxide (LDH)/CuS over copper foam for the overall water splitting reaction. While employed the same as an anode material, the designed heterostructure electrode NiFe-LDH/CuS/Cu exhibits excellent OER performance and it demands 249 mV overpotential to reach a current density of 50 mA cm-2 with a lower Tafel slope value of 81.84 mV dec-1. While as a cathode material, the NiFe-LDH/CuS/Cu shows superior HER performance and it demands just 28 mV of overpotential value to reach a current density of 10 mA cm-2 and a lower Tafel slope value of 95.98 mV dec-1. Hence, the NiFe-LDH/CuS/Cu outperforms the commercial Pt/C and RuO2 in terms of activity in HER and OER, respectively. Moreover, when serving as both the cathode and anode catalysts in an electrolyzer for total water splitting, the synthesized electrode only needs a cell potential of 1.55 V versus RHE to reach a current density of 20 mA cm-2 and long-term durability for 25 h in alkaline media. To study the interfacial electron transfer, Mott-Schottky experiments were performed, representing that the electron is transferred from n-type NiFe-LDH to p-type CuS as a result of creating the p-n junction in NiFe-LDH/CuS/Cu. The formation of this p-n junction allows the LDH layer to be more active toward the OH- adsorption and thereby could allow the OER or HER with a less energy input. This work affords another route to a cost effective, highly efficient catalyst toward producing clean energy across the globe.

3.
Inorg Chem ; 61(48): 19407-19416, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36384273

ABSTRACT

Hydrogen is considered as one of the best alternatives to carbon-based fossil fuels as energy sources. Electrocatalytic water splitting is one of the finest and eco-friendly methods for the production of hydrogen as compared to all other methods such as stream reforming carbon, hydrolysis of metal hydrides, etc. However, the sluggish kinetics on both the half-cell reactions limits the large-scale production of hydrogen. Hence, to overcome such kind of kinetic issues, designing a catalyst with characteristics of low overpotential and high stability is a matter of prime importance for the research community. Perovskite oxides are one of the well-documented materials for their excellent electrocatalytic water oxidation activity. But because of the lack of a proper proton adsorption site, these materials are unable to show proper hydrogen evolution reaction (HER) activity. Several strategies have been adopted for improving the HER activity of perovskite materials like cation doping, nanostructuring, etc. Here in this work, we prepared a shape-selective LaCrO3 (LCO) material. To enhance the electrocatalytic activity, we decorated the LCO with Ru nanoparticles via a hydrothermal method with different concentrations of Ru (Ru@LaCrO3), coined LCOn (n = 1-2.5). The as-synthesized RLCO2.5 showed the highest HER activity by demanding a low overpotential of 150 mV, whereas bare LCO demanded a higher overpotential of 364 mV to reach the benchmark current density of 10 mA/cm2. Also, RLCO2.5 showed a very low Rct value of 15.8 Ω and followed the facile kinetics with a lower Tafel value of 101 mV/dec. It also showed excellent stability over 55 h at a current density of 10 mA/cm2 in chronoamperometry studies. Acceleration degradation studies of RLCO2.5 showed comparably good activity with a small hike in overpotential toward HER. Hence, RLCO-based materials are highly helpful to develop efficient electrocatalysts to produce hydrogen in a large scale.

4.
Inorg Chem ; 61(42): 16895-16904, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36221930

ABSTRACT

To generate green hydrogen by water electrolysis, it is vital to develop highly efficient electrocatalysts for the oxygen evolution reaction (OER). The utilization of various 3d transition metal-based layered double hydroxides (LDHs), especially NiFe-LDH, has gained vast attention for OER under alkaline conditions. However, the lack of a proper electronic structure of the NiFe-LDH and low stability under high-pH conditions limit its large-scale application. To overcome these difficulties, in this study, we constructed an Sn-doped NiFe-LDH material using a simple wet-chemical method. The doping of Sn will synergistically increase the active surface sites of NiFe-LDH. The highly active NiFe-LDH Sn0.015(M) shows excellent OER activity by requiring an overpotential of 250 mV to drive 10 mA/cm2 current density, whereas the bare NiFe-LDH required an overpotential of 295 mV at the same current density. Also, NiFe-LDH Sn0.015(M) shows excellent long-term stability for 50 h in 1 M KOH and also exhibits a higher TOF value of 0.495 s-1, which is almost five times higher than that of bare NiFe-LDH. This study highlights Sn doping as an effective strategy for the development of low-cost, effective, stable, self-supported electrocatalysts with a high current density for improved OER and other catalytic applications in the near future.

5.
ACS Appl Mater Interfaces ; 14(41): 46581-46594, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36194123

ABSTRACT

Finding the active center in a bimetallic zeolite imidazolate framework (ZIF) is highly crucial for the electrocatalytic oxygen evolution reaction (OER). In the present study, we constructed a bimetallic ZIF system with cobalt and manganese metal ions and subjected it to an electrospinning technique for feasible fiber formation. The obtained nanofibers delivered a lower overpotential value of 302 mV at a benchmarking current density of 10 mA cm-2 in an electrocatalytic OER study under alkaline conditions. The obtained Tafel slope and charge-transfer resistance values were 125 mV dec-1 and 4 Ω, respectively. The kinetics of the reaction is mainly attributed from the ratio of metals (Co and Mn) present in the catalyst. Jahn-Teller distortion reveals that the electrocatalytic active center on the Mn-incorporated ZIF-67 nanofibers (Mn-ZIF-67-NFs) was found to be Mn3+ along with the Mn2+ and Co2+ ions on the octahedral and tetrahedral sites, respectively, where Co2+ ions tend to suppress the distortion, which is well supported by density functional theory analysis, molecular orbital study, and magnetic studies.

6.
Nanoscale ; 14(29): 10360-10374, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35708550

ABSTRACT

The development of efficient electrocatalysts for the water splitting process and understanding their fundamental catalytic mechanisms are highly essential to achieving high performance in energy conversion technologies. Herein, we have synthesised spinel nickel ferrite nanofibers (NiFe2O4-NFs) via an electrospinning (ES) method followed by a carbonization process. The resultant fiber was subjected to electrocatalytic water splitting reactions in alkaline medium. The catalytic efficiency of the NiFe2O4-NFs in OER was highly satisfactory. But it is not high enough to catalyse the HER process. Hence, palladium ions were decorated as nanosheets on NiFe2O4-NFs as a heterostructure to improve the catalytic efficiency for HER. Density functional theory (DFT) confirms that the addition of palladium to NiFe2O4-NFs helps to reduce the effect of catalyst poisoning and improve the efficiency of the catalyst. In an alkaline hybrid electrolyser, the required cell voltage was observed as 1.51 V at a fixed current density of 10 mA cm-2.

7.
Inorg Chem ; 61(10): 4502-4512, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35230844

ABSTRACT

Vast attention from researchers is being given to the development of suitable oxygen evolution reaction (OER) electrocatalysts via water electrolysis. Being highly abundant, the use of transition-metal-based OER catalysts has been attractive more recently. Among the various transition-metal-based electrocatalysts, the use of layered double hydroxides (LDHs) has gained special attention from researchers owing to their high stability under OER conditions. In this work, we have reported the synthesis of trimetallic NiCoV-LDH via a simple wet-chemical method. The synthesized NiCoV-LDH possesses aggregated sheet-like structures and is screened for OER studies in alkaline medium. In the study of OER activity, the as-prepared catalyst demanded 280 mV overpotential and this was 42 mV less than the overpotential essential for pristine NiCo-LDH. Moreover, doping of a third metal into the NiCo-LDH system might lead to an increase in TOF values by almost three times. Apart from this, the electronic structural evaluation confirms that the doping of V3+ into NiCo-LDH could synergistically favor the electron transfer among the metal ions, which in turn increases the activity of the prepared catalyst toward the OER.

8.
ACS Appl Mater Interfaces ; 14(1): 1077-1091, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34951298

ABSTRACT

Electrocatalytic water splitting has gained vast attention in recent decades for its role in catalyzing hydrogen production effectively as an alternative to fossil fuels. Moreover, the designing of highly efficient oxygen evolution reaction (OER) electrocatalysts across the universal pH conditions was more challengeable as in harsh anodic potentials, it questions the activity and stability of the concerned catalyst. Generally, geometrical engineering and electronic structural modulation of the catalyst can effectively boost the OER activity. Herein, a Co-doped RuO2 nanorod material is developed and used as an OER electrocatalyst at different pH conditions. Co-RuO2 exhibits a lower overpotential value of 238 mV in an alkaline environment (1 M KOH) with a Tafel slope value of 48 mV/dec. On the other hand, in acidic, neutral, and near-neutral environments, it required overpotentials of 328, 453, and 470 mV, respectively, to attain a 10 mA/cm2 current density. It is observed that doping of Co into the RuO2 could synergistically increase the active sites with the enhanced electrophilic nature of Ru4+ to accelerate OER in all of the pH ranges. This study finds the applicability of earth-abundant-based metals like Co to be used in universal pH conditions with a simple doping technique. Further, it assured the stable nature in all pH electrolytes and needs to be further explored with other metals in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...