Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 384(6699): 1012-1017, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38815034

ABSTRACT

In this work, we show that particles of common minerals break down spontaneously to form nanoparticles in charged water microdroplets within milliseconds. We transformed micron-sized natural minerals like quartz and ruby into 5- to 10-nanometer particles when integrated into aqueous microdroplets generated via electrospray. We deposited the droplets on a substrate, which allowed nanoparticle characterization. We determined through simulations that quartz undergoes proton-induced slip, especially when reduced in size and exposed to an electric field. This leads to particle scission and the formation of silicate fragments, which we confirmed with mass spectrometry. This rapid weathering process may be important for soil formation, given the prevalence of charged aerosols in the atmosphere.

2.
Langmuir ; 39(48): 17071-17079, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37971209

ABSTRACT

Fouling on glass surfaces reduces the solar panel efficiency and increases water consumption for cleaning. Superhydrophobic coatings on glass enable self-cleaning by allowing water droplets to carry away dirt particles. Observing the interaction between charged particles and surfaces provides insights into effective cleaning. Using a high-speed camera and a long-distance objective, we analyzed the in situ deposition of variously functionalized and charged silica dust microparticles on chemically treated glass. The ambient charges for the control, hydrophobic, and positively charged particles were approximately -0.5, -0.13, and +0.5 nC, respectively. We found that a positively charged particle of 2.3 ± 1.2 µm diameter adhered to hydroxylated glass in ∼0.054 s, compared to 0.40 and 0.45 s for quaternary ammonium- and fluorosilane-functionalized hydrophobic glass. Experiments suggest that quaternary ammonium-functionalized glass surfaces are about 77.8% more resistant to soiling than bare surfaces.

3.
Nanoscale ; 15(18): 8141-8147, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37070944

ABSTRACT

We present the fabrication and use of a film of a carborane-thiol-protected tetranuclear copper cluster with characteristic orange luminescence using ambient electrospray deposition (ESD). Charged microdroplets of the clusters produced by an electrospray tip deposit the clusters at an air-water interface to form a film. Different microscopic and spectroscopic techniques characterized the porous surface structure of the film. Visible and rapid quenching of the emission of the film upon exposure to 2-nitrotoluene (2-NT) vapours under ambient conditions was observed. Density functional theory (DFT) calculations established the favourable binding sites of 2-NT with the cluster. Desorption of 2-NT upon heating recovered the original luminescence, demonstrating the reusability of the sensor. Stable emission upon exposure to different organic solvents and its quenching upon exposure to 2,4-dinitrotoluene and picric acid showed selectivity of the film to nitroaromatic species.

4.
ACS Omega ; 7(47): 42926-42938, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36467907

ABSTRACT

A frugal humidity sensor that can detect changes in the humidity of exhaled breath of individuals has been fabricated. The sensor comprises a humidity-sensitive conducting polymer that is in situ formed on a cloth that acts as a substrate. Interdigitated silver electrodes were screen-printed on the modified cloth, and conducting threads connected the electrodes to the measurement circuit. The sensor's response to changing humidity was measured as a voltage drop across the sensor using a microcontroller. The sensor was capable of discerning between fast, normal, and slow breathing based on the response time. A response time of ∼1.3 s was observed for fast breathing. An Android-based mobile application was designed to collect sensor data via Bluetooth for analysis. A time series classification algorithm was implemented to analyze patterns in breathing. The sensor was later stitched onto a face mask, transforming it into a smart mask that can monitor changes in the breathing pattern at work, play, and sleep.

5.
ACS Nano ; 14(6): 6420-6435, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32433866

ABSTRACT

Sustainable nanotechnology has made substantial contributions in providing contaminant-free water to humanity. In this Review, we present the compelling need for providing access to clean water through nanotechnology-enabled solutions and the large disparities in ensuring their implementation. We also discuss the current nanotechnology frontiers in diverse areas of the clean water space with an emphasis on applications in the field and provide suggestions for future research. Extending the vision of sustainable and affordable clean water to environment in general, we note that cities can live and breathe well by adopting such technologies. By understanding the global environmental challenges and exploring remedies from emerging nanotechnologies, sustainability in clean water can be realized. We suggest specific pointers and quantify the impact of such technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...