Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 90(9): 2894-906, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22739780

ABSTRACT

Measures of heifer fertility are economically relevant traits for beef production systems and knowledge of candidate genes could be incorporated into future genomic selection strategies. Ten traits related to growth and fertility were measured in 890 Brangus heifers (3/8 Brahman × 5/8 Angus, from 67 sires). These traits were: BW and hip height adjusted to 205 and 365 d of age, postweaning ADG, yearling assessment of carcass traits (i.e., back fat thickness, intramuscular fat, and LM area), as well as heifer pregnancy and first service conception (FSC). These fertility traits were collected from controlled breeding seasons initiated with estrous synchronization and AI targeting heifers to calve by 24 mo of age. The BovineSNP50 BeadChip was used to ascertain 53,692 SNP genotypes for ∼802 heifers. Associations of genotypes and phenotypes were performed and SNP effects were estimated for each trait. Minimally associated SNP (P < 0.05) and their effects across the 10 traits formed the basis for an association weight matrix and its derived gene network related to FSC (57.3% success and heritability = 0.06 ± 0.05). These analyses yielded 1,555 important SNP, which inferred genes linked by 113,873 correlations within a network. Specifically, 1,386 SNP were nodes and the 5,132 strongest correlations (|r| ≥ 0.90) were edges. The network was filtered with genes queried from a transcriptome resource created from deep sequencing of RNA (i.e., RNA-Seq) from the hypothalamus of a prepubertal and a postpubertal Brangus heifer. The remaining hypothalamic-influenced network contained 978 genes connected by 2,560 edges or predicted gene interactions. This hypothalamic gene network was enriched with genes involved in axon guidance, which is a pathway known to influence pulsatile release of LHRH. There were 5 transcription factors with 21 or more connections: ZMAT3, STAT6, RFX4, PLAGL1, and NR6A1 for FSC. The SNP that identified these genes were intragenic and were on chromosomes 1, 5, 9, and 11. Chromosome 5 harbored both STAT6 and RFX4. The large number of interactions and genes observed with network analyses of multiple sources of genomic data (i.e., GWAS and RNA-Seq) support the concept of FSC being a polygenic trait.


Subject(s)
Cattle/genetics , Cattle/physiology , Hypothalamus/metabolism , Pregnancy, Animal , Transcriptome , Animals , DNA/genetics , Female , Fertility/genetics , Gene Expression Regulation , Genome , Genotype , Polymorphism, Single Nucleotide , Pregnancy , Pregnancy, Animal/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
2.
J Anim Sci ; 89(6): 1669-83, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21357453

ABSTRACT

Harsh tropical environments impose serious challenges on poorly adapted species. In beef cattle, tropical adaptation in the form of temperature and disease resistance, coupled with acclimatization to seasonal and limited forage, comes at a cost to production efficiency. Prominent among these costs is delayed onset of puberty, a challenging phenotype to manipulate through traditional breeding mechanisms. Recently, system biology approaches, including gene networks, have been applied to the genetic dissection of complex phenotypes. We aimed at developing and studying gene networks underlying cattle puberty. Our starting material comprises the association results of ~50,000 SNP on 22 traits, including age at puberty, and 2 cattle breed populations: Brahman (n = 843) and Tropical Composite (n = 866). We defined age at puberty as the age at first corpus luteum (AGECL). By capturing the genes harboring mutations minimally associated (P < 0.05) to AGECL or to a set of traits related with AGECL, we derived a gene network for each breed separately and a third network for the combined data set. At the intersection of the 3 networks, we identified candidate genes and pathways that were common to both breeds. Resulting from these analyses, we identified an enrichment of genes involved in axon guidance, cell adhesion, ErbB signaling, and glutamate activity, pathways that are known to affect pulsatile release of GnRH, which is necessary for the onset of puberty. Furthermore, we employed network connectivity and centrality parameters along with a regulatory impact factor metric to identify the key transcription factors (TF) responsible for the molecular regulation of puberty. As a novel finding, we report 5 TF (HIVEP3, TOX, EYA1, NCOA2, and ZFHX4) located in the network intersecting both breeds and interacting with other TF, forming a regulatory network that harmonizes with the recent literature of puberty. Finally, we support our network predictions with evidence derived from gene expression in hypothalamic tissue of adult cows.


Subject(s)
Cattle/growth & development , Cattle/genetics , Gene Expression Regulation, Developmental/physiology , Polymorphism, Single Nucleotide/genetics , Sexual Maturation/genetics , Animals , Gene Expression Profiling , Genome , Tropical Climate
3.
Anim Genet ; 41(5): 467-77, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20477791

ABSTRACT

Beef cattle breeds consist of three major genetic subdivisions. The taurine group is adapted to temperate environments, and the zebu and Sanga groups are both adapted to tropical environments. With the advent of genotyping and sequencing technologies in agriculture, genome-wide exploration of the genetic basis for the differences in tropical adaptation has only just become possible. In this study, approximately 9000 single nucleotide polymorphism markers were genotyped on 317 animals of a selection of taurine, zebu, and composite breeds to characterize any systematic differences between these groups. We identified 91 intra-breed-class markers; 78 were polymorphic only within the zebu animals, while 13 were polymorphic only in the taurine animals. There were no fixed differences (fixed for alternate alleles between the two breed types) between zebu and taurine animals. We found 14 regions with significantly different allele frequencies between zebu and taurine animals indicative of variable selection pressure or genetic drift. We also found 12 independent regions of differential extended haplotype homozygosity (EHH), indicative of recent selection or rapid fixation of the alternate allele within a short period of time in one of the two breed classes. A preliminary functional genomics analysis of these regions pointed towards signatures of tropical attributes including keratins, heat-shock proteins and heat resistance genes. We anticipate this investigation to be a stepping-stone for future studies to identify genomic regions specific to the two cattle groups, and to subsequently assist in the discrimination between temperate and tropically adapted cattle.


Subject(s)
Biological Evolution , Cattle/classification , Cattle/genetics , Polymorphism, Single Nucleotide , Adaptation, Physiological , Animals , Cattle/physiology , Climate , Gene Frequency , Genome , Genotype , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...