Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 7308, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26106063

ABSTRACT

Transparent conductors combine two generally contradictory physical properties, but there are numerous applications where both functionalities are crucial. Previous searches focused on doping wide-gap metal oxides. Focusing instead on the family of 18 valence electron ternary ABX compounds that consist of elements A, B and X in 1:1:1 stoichiometry, we search theoretically for electronic structures that simultaneously lead to optical transparency while accommodating intrinsic defect structures that produce uncompensated free holes. This leads to the prediction of a stable, never before synthesized TaIrGe compound made of all-metal heavy atom compound. Laboratory synthesis then found it to be stable in the predicted crystal structure and p-type transparent conductor with a strong optical absorption peak at 3.36 eV and remarkably high hole mobility of 2,730 cm(2) V(-1) s(-1) at room temperature. This methodology opens the way to future searches of transparent conductors in unexpected chemical groups.

2.
J Am Chem Soc ; 135(27): 10048-54, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23672376

ABSTRACT

Discovery of new materials is important for all fields of chemistry. Yet, existing compilations of all known ternary inorganic solids still miss many possible combinations. Here, we present an example of accelerated discovery of the missing materials using the inverse design approach, which couples predictive first-principles theoretical calculations with combinatorial and traditional experimental synthesis and characterization. The compounds in focus belong to the equiatomic (1:1:1) ABX family of ternary materials with 18 valence electrons per formula unit. Of the 45 possible V-IX-IV compounds, 29 are missing. Theoretical screening of their thermodynamic stability revealed eight new stable 1:1:1 compounds, including TaCoSn. Experimental synthesis of TaCoSn, the first ternary in the Ta-Co-Sn system, confirmed its predicted zincblende-derived crystal structure. These results demonstrate how discovery of new materials can be accelerated by the combination of high-throughput theoretical and experimental methods. Despite being made of three metallic elements, TaCoSn is predicted and explained to be a semiconductor. The band gap of this material is difficult to measure experimentally, probably due to a high concentration of interstitial cobalt defects.

3.
Nano Lett ; 7(10): 3056-64, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17887715

ABSTRACT

Polycations that absorb protons in response to the acidification of endosomes can theoretically disrupt these vesicles via the "proton sponge" effect. To exploit this mechanism, we created nanoparticles with a segregated core-shell structure for efficient, noncytotoxic intracellular drug delivery. Cross-linked polymer nanoparticles were synthesized with a pH-responsive core and hydrophilic charged shell designed to disrupt endosomes and mediate drug/cell binding, respectively. By sequestering the relatively hydrophobic pH-responsive core component within a more hydrophilic pH-insensitive shell, nontoxic delivery of small molecules and proteins to the cytosol was achieved in dendritic cells, a key cell type of interest in the context of vaccines and immunotherapy.


Subject(s)
Cytosol/chemistry , Dendritic Cells/chemistry , Dendritic Cells/physiology , Drug Delivery Systems/methods , Endocytosis/physiology , Endosomes/physiology , Nanoparticles/chemistry , Animals , Cell Line , Cell Membrane/chemistry , Cell Membrane/physiology , Cell Membrane Permeability/physiology , Crystallization/methods , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Nanoparticles/ultrastructure , Nanotechnology/methods , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...