Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(4): e15399, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37128347

ABSTRACT

In the present scenario of research, the recycling of inexpensive widely available agricultural waste/biowaste to activate carbon (AC) and procurement of value-added product has significant impact on energy storage systems, particularly in Electrochemical double layer capacitors (EDLCs). Herein, we report the production of KOH activated carbons from different biomass sources such as Musa Acuminata stem (MAC), Pongamia pinnata seed oil extract cake (PPC), Cajanus Cajan stem (CCC) and Asclepias syriaca floss (ASC) for the said purpose. Initially, the biomass materials were pyrolyzed at 550 °C and then activated with KOH at 800 °C. All the carbon materials were characterized for their physico-chemical properties by various analytical techniques and compared. Further, these materials were studied for their electrochemical performance using suitable electro-analytical techniques in 1 M KOH solution. ACs (Activated carbons) derived from MAC, PPC, CCC & ASC were estimated in three electrode system and were found to exhibit a specific capacitance (Cs) of 358, 343, 355 & 540 F/g at a scan rate of 2 mV/s and 102, 188, 253 & 256 F/g at a current density of 2.5 A/g respectively. The main novel objective of this work is to correlate the morphological and surface properties of these ACs obtained from different biomass sources with electrochemical performance. A symmetric coin cell constructed with ASC material exhibited Cs of 67 F/g at a current density of 2.5 A/g with maximum energy & power densities (ED & PD) of 37.2 W h/kg and 19.9 kW/kg respectively. Further the cell showed 25,000 cycles stability with 86% Cs retention and 100% coulombic efficiency.

2.
J Appl Biomater Funct Mater ; 13(4): e301-12, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26660626

ABSTRACT

Carbon nanotubes (CNTs) have been widely recognized and used for controlled drug delivery and in various other fields due to their unique properties and distinct advantages. Both single-walled carbon nanotubes (SWCNTs) and multiwalled (MWCNTs) carbon nanotubes are used and/or studied for potential applications in medical, energy, textile, composite, and other areas. Since CNTs are chemically inert and are insoluble in water or other organic solvents, they are functionalized or modified to carry payloads or interact with biological molecules. CNTs have been preferably functionalized with proteins because CNTs are predominantly used for medical applications such as delivery of drugs, DNA and genes, and also for biosensing. Extensive studies have been conducted to understand the interactions, cytotoxicity, and potential applications of protein functionalized CNTs but contradicting results have been published on the cytotoxicity of the functionalized CNTs. This paper provides a brief review of CNTs functionalized with proteins, methods used to functionalize the CNTs, and their potential applications.


Subject(s)
Nanotubes, Carbon/chemistry , Biosensing Techniques , DNA/chemistry , DNA/metabolism , Drug Carriers/chemistry , Humans , Microscopy, Atomic Force , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Proteins/chemistry , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...