Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 613(7943): 355-364, 2023 01.
Article in English | MEDLINE | ID: mdl-36599988

ABSTRACT

DNA methylation is a fundamental epigenetic mark that governs gene expression and chromatin organization, thus providing a window into cellular identity and developmental processes1. Current datasets typically include only a fraction of methylation sites and are often based either on cell lines that underwent massive changes in culture or on tissues containing unspecified mixtures of cells2-5. Here we describe a human methylome atlas, based on deep whole-genome bisulfite sequencing, allowing fragment-level analysis across thousands of unique markers for 39 cell types sorted from 205 healthy tissue samples. Replicates of the same cell type are more than 99.5% identical, demonstrating the robustness of cell identity programmes to environmental perturbation. Unsupervised clustering of the atlas recapitulates key elements of tissue ontogeny and identifies methylation patterns retained since embryonic development. Loci uniquely unmethylated in an individual cell type often reside in transcriptional enhancers and contain DNA binding sites for tissue-specific transcriptional regulators. Uniquely hypermethylated loci are rare and are enriched for CpG islands, Polycomb targets and CTCF binding sites, suggesting a new role in shaping cell-type-specific chromatin looping. The atlas provides an essential resource for study of gene regulation and disease-associated genetic variants, and a wealth of potential tissue-specific biomarkers for use in liquid biopsies.


Subject(s)
Cells , DNA Methylation , Epigenesis, Genetic , Epigenome , Humans , Cell Line , Cells/classification , Cells/metabolism , Chromatin/genetics , Chromatin/metabolism , CpG Islands/genetics , DNA/genetics , DNA/metabolism , Embryonic Development , Enhancer Elements, Genetic , Organ Specificity , Polycomb-Group Proteins/metabolism , Whole Genome Sequencing
2.
Eur Respir J ; 60(5)2022 11.
Article in English | MEDLINE | ID: mdl-35450968

ABSTRACT

BACKGROUND: Circulating biomarkers for lung damage are lacking. Lung epithelium-specific DNA methylation patterns can potentially report the presence of lung-derived cell-free DNA (cfDNA) in blood, as an indication of lung cell death. METHODS: We sorted human lung alveolar and bronchial epithelial cells from surgical specimens, and obtained their methylomes using whole-genome bisulfite sequencing. We developed a PCR sequencing assay determining the methylation status of 17 loci with lung-specific methylation patterns, and used it to assess lung-derived cfDNA in the plasma of healthy volunteers and patients with lung disease. RESULTS: Loci that are uniquely unmethylated in alveolar or bronchial epithelial cells are enriched for enhancers controlling lung-specific genes. Methylation markers extracted from these methylomes revealed that normal lung cell turnover probably releases cfDNA into the air spaces, rather than to blood. People with advanced lung cancer show a massive elevation of lung cfDNA concentration in blood. Among individuals undergoing bronchoscopy, lung-derived cfDNA is observed in the plasma of those later diagnosed with lung cancer, and to a lesser extent in those diagnosed with other lung diseases. Lung cfDNA is also elevated in patients with acute exacerbation of COPD compared with patients with stable disease, and is associated with future exacerbation and mortality in these patients. CONCLUSIONS: Universal cfDNA methylation markers of normal lung epithelium allow for mutation-independent, sensitive and specific detection of lung-derived cfDNA, reporting on ongoing lung injury. Such markers can find broad utility in the study of normal and pathologic human lung dynamics.


Subject(s)
Cell-Free Nucleic Acids , Lung Neoplasms , Humans , DNA Methylation , Cell-Free Nucleic Acids/genetics , Liquid Biopsy , Biomarkers , Epithelium , Lung , Lung Neoplasms/genetics , Biomarkers, Tumor/genetics
3.
PLoS One ; 7(11): e49387, 2012.
Article in English | MEDLINE | ID: mdl-23185324

ABSTRACT

Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB).


Subject(s)
Caenorhabditis elegans Proteins/classification , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/enzymology , Computational Biology/methods , Multigene Family , rab GTP-Binding Proteins/classification , rab GTP-Binding Proteins/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans Proteins/chemistry , Clone Cells , Conserved Sequence/genetics , Humans , Introns/genetics , Molecular Sequence Data , Open Reading Frames/genetics , Phylogeny , RNA Splicing/genetics , Reproducibility of Results , Sequence Alignment , rab GTP-Binding Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...