Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 51(38): 14686-14699, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36098266

ABSTRACT

We report the controlled growth of biologically active compounds: gold nanoparticles (AuNPs) in various shapes, including their green synthesis, characterization, and studies of their applications towards biological, degradation and recycling. Using spectroscopic methods, studies on responsive binding mechanisms of AuNPs with biopolymers herring sperm deoxyribonucleic acid (hsDNA), bovine serum albumin (BSA), dyes degradation study, and exquisitely gold separation studies/recovery from nanowaste, COVID-19 testing kits, and pregnancy testing kits are discussed. The sensing ability of the AuNPs with biopolymers was investigated via various analytical techniques. The rate of degradation of various dyes in the presence and absence of AuNPs was studied by deploying stirring, IR, solar, and UV-Vis methods. AuNPs were found to be the most active cytotoxic agent against human breast cancer cell lines such as MCF-7 and MDAMB-468. Furthermore, an economical process for the recovery of gold traces from nanowaste, COVID-19 detection kits, and pregnancy testing kits was developed using inexpensive and eco-friendly α-cyclodextrin sugar. This method was found to be easy and safest in comparison with the universally accepted cyanidation process. In the future, small gold jewelry makers and related industries would benefit from the proposed gold-recycling process and it might contribute to their socio-economic growth. The methodologies proposed are also beneficial for trace-level forensic investigation.


Subject(s)
COVID-19 , Metal Nanoparticles , alpha-Cyclodextrins , COVID-19/diagnosis , COVID-19 Testing , Coloring Agents , Cytotoxins , DNA , Gold/chemistry , Humans , Male , Metal Nanoparticles/chemistry , Semen , Serum Albumin, Bovine/chemistry , Sugars
2.
ACS Cent Sci ; 7(10): 1728-1735, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34729416

ABSTRACT

The rapidly increasing use of digital technologies requires the rethinking of methods to store data. This work shows that digital data can be stored in mixtures of fluorescent dye molecules, which are deposited on a surface by inkjet printing, where an amide bond tethers the dye molecules to the surface. A microscope equipped with a multichannel fluorescence detector distinguishes individual dyes in the mixture. The presence or absence of these molecules in the mixture encodes binary information (i.e., "0" or "1"). The use of mixtures of molecules, instead of sequence-defined macromolecules, minimizes the time and difficulty of synthesis and eliminates the requirement of sequencing. We have written, stored, and read a total of approximately 400 kilobits (both text and images) with greater than 99% recovery of information, written at an average rate of 128 bits/s (16 bytes/s) and read at a rate of 469 bits/s (58.6 bytes/s).

3.
J Inorg Biochem ; 212: 111210, 2020 11.
Article in English | MEDLINE | ID: mdl-33010530

ABSTRACT

Curcumin, a constituent of Curcuma longa L-Zingiberaceae is used in traditional Indian and worldwide medicine and shows anticancer and antioxidant properties. Curcumin has numerous biological and pharmacological activities but due to its hydrophobic nature, the major drawback is poor absorption and rapid elimination, rendering curcumin with the tag of a poor biomaterial. Hence, there is a need to develop functional metal containing curcumin model systems (FMCCMS) as a metallo-biomolecule to enhance the bioavailability of curcumin. We designed the interaction of silver metal ion with curcumin to form curcumin-silver nanocomposite (CURC-AgNCP) via ultrasonic synthetic route. Formations of FMCCMS were characterized by spectroscopic techniques. The crystalline face-centered cubic pattern and particle size of the nanocomposite was evaluated using X-ray diffraction and high-resolution transmission electron microscopy. The bonding of silver metal to curcumin was confirmed by X-ray photon spectroscopy. Interaction of the nanocomposite with bovine serum albumin (BSA) protein was performed using excitation, emission, and circular dichroism spectroscopy. In binding interaction of BSA, the negative value of ∆S° (-358.04 J mol-1 K-1) and ∆H° (-129.42 KJ mol-1) demonstrates the hydrophilic nature of the nanocomposite. The binding distance r evaluated according to the Forster resonance energy transfer theory and was 4.69 nm for CURC-AgNCP, which suggested non-radiative transfer of energy between CURC-AgNCP and BSA. The role of FMCCMS metallo-biomolecule CURC-AgNCP in medicine for cancer activity can have immense importance and hence we performed Sulphorhodamine B based in-vitro cytotoxicity assay on human breast cancer Michigan Cancer Foundation-7 cell line.


Subject(s)
Curcumin/chemistry , Nanocomposites/chemistry , Serum Albumin, Bovine/chemistry , Silver/chemistry , Biological Availability , Cell Line, Tumor , Humans , Microscopy, Electron, Transmission , Spectrum Analysis/methods
4.
Chemosphere ; 258: 127179, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32554002

ABSTRACT

Hydrophobic membranes for desalination and toxic organic pollutant removal have been fabricated using polyamide - PDMS (polydimethylsiloxane) chemistries in a one-step protocol. The curing of polyamide and PDMS are orthogonal and co-curing both networks imparts hydrophobicity to the thin film composite membranes. The membranes exhibit increased adsorption of pesticides from the feed water along with maintaining excellent salt rejection capability (97% NaCl rejection), thus giving the membranes a multifunctional character. Three toxic pesticides have been used in this study to demonstrate the viability of combining osmosis desalination technology with organic matter adsorption. The membranes also show excellent resistance to fouling by toxic pesticides (85% salt rejection vs 67% for commercial membranes in the presence of pesticides) and significantly improved chlorine tolerance (93.8% salt rejection vs 86.5% for commercial membranes after 20 h of exposure to sodium hypochlorite solution).


Subject(s)
Chlorine/chemistry , Dimethylpolysiloxanes/chemistry , Membranes, Artificial , Pesticides/isolation & purification , Water Purification/instrumentation , Calorimetry, Differential Scanning , Hydrophobic and Hydrophilic Interactions , Nylons/chemistry , Osmosis , Spectrometry, X-Ray Emission , Thermogravimetry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods
5.
ACS Appl Mater Interfaces ; 12(24): 27555-27561, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32441499

ABSTRACT

Fiber-reinforced composites have become the material of choice for aerospace structures because of their favorable strength-to-weight ratio. Given the increasing amounts of counterfeit composite parts showing up in the complex aerospace supply chain, it is absolutely vital to track a composite part throughout its lifecycle-from production to usage and to disposal. Existing barcoding methods are invasive, affect the structural properties of composites, and/or are vulnerable to tampering. We describe a universal method to store information in fiber-reinforced composites based on solid-state in situ reduction leading to embedded nanoparticles with controlled morphologies. This simple, cost-effective, mild, surfactant-free, and one-step protocol for the fabrication of embedded platinum nanostructures leads to morphology-based barcodes for polymeric composites. We also describe a coding methodology wherein a 1 × 1 cm code can represent 3.4 billion parts to 95 trillion parts, depending on the resolution required along with access to morphology-based chemical encryption systems.

6.
Adv Mater ; 31(51): e1901802, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31691381

ABSTRACT

Nanoparticle polymer composites have enabled material multifunctionalities that are difficult to obtain otherwise. A simple modification to a commercially available resin system enables a universal methodology to embed nanoparticles in resins via spatial, temporal, thermal, concentration, and chemical control parameters. Changes in nanoparticle density distribution are exploited to demonstrate dynamic optical and electronic properties that can be processed on-demand, without the need for expensive equipment or cleanroom facilities. This strategy provides access to the control of optical (cooperative plasmonic effects), electronic (insulator to a conductor), and chemical parameters (multimetal patterning). Using the same composite resin system, the followings are fabricated: i) diffraction gratings with tuneable diffraction efficiencies (10-78% diffraction efficiencies), ii) organic electrochemical transistors with a low drive voltage, and iii) embedded electrodes in confined spaces for potential diagnostic applications.

7.
Adv Mater ; : e1801523, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29974525

ABSTRACT

In situ reduction of chloroauric acid inside an amine-cured epoxy matrix leads to formation of gold nanoparticles which are embedded inside the part. This phenomenon is leveraged to design an authentication system for composites wherein the particles are embedded spatially and are invisible to the naked eye. Under UV light, the particles diffract light and create an easily visible path. The particles penetrate inside the part and create a permanent, cost-effective, tamper-proof code. The advantage of this technique is that this authentication system can be built in composite parts after fabrication of the composite structure. As very small amount (nanograms) of particles are present in the part, negligible change in the thermal characteristics of the parent matrix is observed. The particles can be embedded easily in carbon fiber as well as glass fiber reinforced epoxy structures.

8.
Nat Chem ; 10(5): 573, 2018 May.
Article in English | MEDLINE | ID: mdl-29643460

ABSTRACT

We the authors are retracting this Article because of our failure to reproduce the molecular weight dispersities (PDI) shown in Fig. 4 using the chain-transfer agent described in the paper (CTA1). While the degenerate chain-transfer mechanism described in Fig. 3 is correct, the best molecular weight dispersities that could be reproduced with the chain-transfer agent shown in the Article are much larger (PDI > 2.0) than reported.We have since studied the kinetics of CTA1 in comparison with several other chain-transfer agents we are currently investigating and we now understand that the reactivity of CTA1 towards propagating ruthenium alkylidene complexes is very low. Very long monomer addition times would therefore have been necessary to gain control over the molecular weight distribution. Such long addition times would exceed the lifetime of the Grubbs catalyst in solution. Faster addition of the monomer has since repeatedly been shown to broaden the molecular weight dispersity.Additionally, the best chain-transfer agents we are currently investigating are orders of magnitude more reactive than CTA1 but give broader molecular weight dispersities than reported in Fig. 4. Molecular weight and dispersity control as shown in Fig. 4 is therefore an inappropriate claim for CTA1.The authors deeply regret these errors and apologize to the community.

9.
J Am Chem Soc ; 139(51): 18688-18697, 2017 12 27.
Article in English | MEDLINE | ID: mdl-29210573

ABSTRACT

This work describes the development of magnetic levitation (MagLev) to characterize the kinetics of free-radical polymerization of water-insoluble, low-molecular-weight monomers that show a large change in density upon polymerization. Maglev measures density, and certain classes of monomers show a large change in density when monomers covalently join in polymer chains. MagLev characterized both the thermal polymerization of methacrylate-based monomers and the photopolymerization of methyl methacrylate and made it possible to determine the orders of reaction and the Arrhenius activation energy of polymerization. MagLev also made it possible to monitor polymerization in the presence of solids (aramid fibers, and carbon fibers, and glass fibers). MagLev offers a new analytical technique to materials and polymer scientists that complements other methods (even those based on density, such as dilatometry), and will be useful in investigating polymerizations, evaluating inhibition of polymerizations, and studying polymerization in the presence of included solid materials (e.g., for composite materials).

10.
Angew Chem Int Ed Engl ; 55(40): 12343-6, 2016 09 26.
Article in English | MEDLINE | ID: mdl-27592840

ABSTRACT

Use of a tandem ring-opening-ring-closing metathesis (RORCM) strategy for the synthesis of functional metathesis catalysts is reported. Ring opening of 7-substituted norbornenes and subsequent ring-closing metathesis forming a thermodynamically stable 6-membered ring lead to a very efficient synthesis of new catalysts from commercially available Grubbs' catalysts. Hydroxy functionalized Grubbs' first- as well as third-generation catalysts have been synthesized. Mechanistic studies have been performed to elucidate the order of attack of the olefinic bonds. This strategy was also used to synthesize the ruthenium methylidene complex.

11.
Nat Chem ; 7(9): 718-23, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26291943

ABSTRACT

In living ring-opening metathesis polymerization (ROMP), a transition-metal-carbene complex polymerizes ring-strained olefins with very good control of the molecular weight of the resulting polymers. Because one molecule of the initiator is required for each polymer chain, however, this type of polymerization is expensive for widespread use. We have now designed a chain-transfer agent (CTA) capable of reducing the required amount of metal complex while still maintaining full control over the living polymerization process. This new method introduces a degenerative transfer process to ROMP. We demonstrate that substituted cyclohexene rings are good CTAs, and thereby preserve the 'living' character of the polymerization using catalytic quantities of the metal complex. The resulting polymers show characteristics of a living polymerization, namely narrow molecular-weight distribution, controlled molecular weights and block copolymer formation. This new technique provides access to well-defined polymers for industrial, biomedical and academic use at a fraction of the current costs and significantly reduced levels of residual ruthenium catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...