Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Pharm Bull (Tokyo) ; 59(3): 315-20, 2011.
Article in English | MEDLINE | ID: mdl-21372411

ABSTRACT

The aim of this work was to prepare chitosan nanoparticles loaded with antineoplastic drug Lomustine (LCNPs), by ionic-gelation method with homogenization. The nanoparticles were characterized for particle size, polydispersity index (PDI), surface morphology, encapsulation efficiency, in-vitro drug release and cytotoxicity on human lung cancer cell line L132 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The particle size, zeta potential and encapsulation efficiency of prepared nanoparticles ranged from 75 ± 1.1 to 637 ± 1.6 nm (PDI from 0.05 ± 0.001 to 0.18 ± 0.007), 37.2 ± 0.21 to 53.8 ± 0.18 mV and 66.74 ± 1.4 to 98.0 ± 1.8% respectively. The particles were spherical in shape with smooth surface in scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. Mechanical shearing by homogenization treatment significantly changed the nanoparticle size. The drug release rate was biphasic and diffusion controlled over the 8 h. LCNPs greatly inhibited the growth of the L132 cancer cell line used in this study in comparison to the native Lomustine (LMT).


Subject(s)
Antineoplastic Agents/chemistry , Chitosan/chemistry , Lomustine/chemistry , Lung Neoplasms/drug therapy , Nanoparticles/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/toxicity , Cell Line, Tumor , Humans , Lomustine/therapeutic use , Lomustine/toxicity , Nanoparticles/ultrastructure , Particle Size , Spectroscopy, Fourier Transform Infrared
2.
Chem Pharm Bull (Tokyo) ; 59(2): 272-8, 2011.
Article in English | MEDLINE | ID: mdl-21297311

ABSTRACT

The aim of this investigation was to develop 5-fluorouracil (5-FU) loaded chitosan nanoparticles (CH-DNPs) for ophthalmic delivery. CH-DNPs were fabricated by ionotropic gelation mechanism using chitosan (CH) and a polyanion (TPP). The nanoparticles were smooth and spherical, confirmed by scanning electron microscopy (SEM) and atomic force microscope (AFM). CH/TPP mass ratio and TPP significantly changed the particles size morphology and encapsulation efficiency. The nanoparticles size ranged from approximately 114 to 192 nm and had a positive zeta potential (30±4 mV). The encapsulation efficiency, loading capacity and recovery of DNPs were 8.12-34.32%, 3.14-15.24% and 24.22 to 67% respectively. Physical characterization was done by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). No interaction was observed in between drug and polymer and crystallinity of drug was not changed in drug loaded nanoparticles. In-vitro release study of DNPs showed diffusion controlled release. Bioavailability study of batch CS9 was studied in rabbit eye and compare to 5-FU solution. 5-FU level was significantly higher in aqueous humor of rabbit eye. Ocular tolerance was studied in the eye of New Zealand rabbits and tested formulation was non-irritant with no sign of inflammation.


Subject(s)
Chitosan/administration & dosage , Drug Delivery Systems/methods , Eye , Fluorouracil/administration & dosage , Nanoparticles/administration & dosage , Animals , Chitosan/chemistry , Eye/drug effects , Female , Fluorouracil/chemistry , Male , Nanoparticles/chemistry , Particle Size , Rabbits , X-Ray Diffraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...