Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Org Lett ; 26(15): 3289-3293, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38568017

ABSTRACT

Pseudoindoxyl is a partial skeleton found in various natural products. Its light-absorption properties make it useful for the design of functional molecules. However, versatile synthesis methods have not yet been reported. In this report, we present a versatile synthetic method for pseudoindoxyls using the direct S0 → Tn transition under visible light irradiation. We also discuss the application of pseudoindoxyls as photocatalysts.

2.
Chem Pharm Bull (Tokyo) ; 70(3): 235-239, 2022.
Article in English | MEDLINE | ID: mdl-35228388

ABSTRACT

Heavy atom-containing molecules cause a photoreaction by a direct S0 → Tn transition. Therefore, even in a hypervalent iodine compound with a benzene ring as the main skeleton, the photoreaction proceeds under 365-400 nm wavelength light, where UV-visible spectra are not observed by usual measurement method. Some studies, however, report hypervalent iodine compounds that strongly absorb visible light. Herein, we report the synthesis of two visible light-absorbing hypervalent iodines and their photooxidation properties under visible light irradiation. We also demonstrated that the S0 → Tn transition causes the photoreaction to proceed under wavelengths in the blue and green light region.


Subject(s)
Iodine , Light , Oxidation-Reduction
3.
Angew Chem Int Ed Engl ; 59(17): 6847-6852, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32027078

ABSTRACT

According to the Grotthuss-Draper law, light must be absorbed by a substrate to initiate a photoreaction. There have been several reports, however, on the promotion of photoreactions using hypervalent iodine during irradiation with light from a non-absorbing region. This contradiction gave rise to a mystery regarding photoreactions involving hypervalent iodine. We demonstrated that the photoactivation of hypervalent iodine with light from the apparently non-absorbing region proceeds via a direct S0 →Tn transition, which has been considered a forbidden process. Spectroscopic, computational, and synthetic experimental results support this conclusion. Moreover, the photoactivation mode could be extended to monovalent iodine and bromine, as well as bismuth(III)-containing molecules, providing new possibilities for studying photoreactions that involve heavy-atom-containing molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...