Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
J Biol Chem ; 298(2): 101579, 2022 02.
Article in English | MEDLINE | ID: mdl-35031323

ABSTRACT

Rho family small GTPases (Rho) regulate various cell motility processes by spatiotemporally controlling the actin cytoskeleton. Some Rho-specific guanine nucleotide exchange factors (RhoGEFs) are regulated via tyrosine phosphorylation by Src family tyrosine kinase (SFK). We also previously reported that PLEKHG2, a RhoGEF for the GTPases Rac1 and Cdc42, is tyrosine-phosphorylated by SRC. However, the details of the mechanisms by which SFK regulates RhoGEFs are not well understood. In this study, we found for the first time that PLEKHG1, which has very high homology to the Dbl and pleckstrin homology domains of PLEKHG2, activates Cdc42 following activation by FYN, a member of the SFK family. We also show that this activation of PLEKHG1 by FYN requires interaction between these two proteins and FYN-induced tyrosine phosphorylation of PLEKHG1. We also found that the region containing the Src homology 3 and Src homology 2 domains of FYN is required for this interaction. Finally, we demonstrated that tyrosine phosphorylation of Tyr-720 and Tyr-801 in PLEKHG1 is important for the activation of PLEKHG1. These results suggest that FYN is a regulator of PLEKHG1 and may regulate cell morphology through Rho signaling via the interaction with and tyrosine phosphorylation of PLEKHG1.


Subject(s)
Rho Guanine Nucleotide Exchange Factors , rho GTP-Binding Proteins , src-Family Kinases , Phosphorylation , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Tyrosine/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism
2.
iScience ; 23(7): 101332, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32668199

ABSTRACT

Somatic plant cells can regenerate shoots and/or roots or adventitious embryonic calluses, which may induce organ formation under certain conditions. Such regenerations occur via dedifferentiation of somatic cells, induction of organs, and their subsequent outgrowth. Despite recent advances in understanding of plant regeneration, many details of shoot induction remain unclear. Here, we artificially induced shoot stem-like green organs (SSOs) in Arabidopsis thaliana roots via simultaneous induction of two transcription factors (TFs), ARABIDOPSIS THALIANA HOMEOBOX PROTEIN 25 (ATHB25, At5g65410) and the B3 family transcription factor REPRODUCTIVE MERISTEM 7 (REM7, At3g18960). The SSOs exhibited negative gravitropism and differentiated vascular bundle phenotypes. The ATHB25/REM7 induced the expression of genes controlling shoot stem characteristics by ectopic expression in roots. Intriguingly, the restoration of root growth was seen in the consecutive and adjacent parts of the SSOs under gene induction conditions. Our findings thus provide insights into the development and regeneration of plant shoot stems.

3.
J Cell Sci ; 133(15)2020 08 11.
Article in English | MEDLINE | ID: mdl-32661090

ABSTRACT

CENP-B binds to CENP-B boxes on centromeric satellite DNAs (known as alphoid DNA in humans). CENP-B maintains kinetochore function through interactions with CENP-A nucleosomes and CENP-C. CENP-B binding to transfected alphoid DNA can induce de novo CENP-A assembly, functional centromere and kinetochore formation, and subsequent human artificial chromosome (HAC) formation. Furthermore, CENP-B also facilitates H3K9 (histone H3 lysine 9) trimethylation on alphoid DNA, mediated by Suv39h1, at ectopic alphoid DNA integration sites. Excessive heterochromatin invasion into centromere chromatin suppresses CENP-A assembly. It is unclear how CENP-B controls such different chromatin states. Here, we show that the CENP-B acidic domain recruits histone chaperones and many chromatin modifiers, including the H3K36 methylase ASH1L, as well as the heterochromatin components Suv39h1 and HP1 (HP1α, ß and γ, also known as CBX5, CBX1 and CBX3, respectively). ASH1L facilitates the formation of open chromatin competent for CENP-A assembly on alphoid DNA. These results indicate that CENP-B is a nexus for histone modifiers that alternatively promote or suppress CENP-A assembly by mutually exclusive mechanisms. Besides the DNA-binding domain, the CENP-B acidic domain also facilitates CENP-A assembly de novo on transfected alphoid DNA. CENP-B therefore balances CENP-A assembly and heterochromatin formation on satellite DNA.


Subject(s)
Chromatin , Heterochromatin , Autoantigens/genetics , Centromere , Centromere Protein A/genetics , Chromatin/genetics , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Epigenesis, Genetic , Heterochromatin/genetics , Humans
4.
J Cell Sci ; 133(14)2020 07 21.
Article in English | MEDLINE | ID: mdl-32576661

ABSTRACT

Post-translational modifications on histones can be stable epigenetic marks or transient signals that can occur in response to internal and external stimuli. Levels of histone modifications fluctuate during the cell cycle and vary among different cell types. Here, we describe a simple system to monitor the levels of multiple histone modifications in single cells by multicolor immunofluorescence using directly labeled modification-specific antibodies. We analyzed histone H3 and H4 modifications during the cell cycle. Levels of active marks, such as acetylation and H3K4 methylation, were increased during the S phase, in association with chromatin duplication. By contrast, levels of some repressive modifications gradually increased during G2 and the next G1 phases. We applied this method to validate the target modifications of various histone demethylases in cells using a transient overexpression system. In extracts of marine organisms, we also screened chemical compounds that affect histone modifications and identified psammaplin A, which was previously reported to inhibit histone deacetylases. Thus, the method presented here is a powerful and convenient tool for analyzing the changes in histone modifications.


Subject(s)
Histone Code , Single-Cell Analysis , Acetylation , Fluorescent Antibody Technique , Histones/metabolism , Protein Processing, Post-Translational
5.
J Cell Sci ; 133(14)2020 07 24.
Article in English | MEDLINE | ID: mdl-32576667

ABSTRACT

Most eukaryotic centromeres are located within heterochromatic regions. Paradoxically, heterochromatin can also antagonize de novo centromere formation, and some centromeres lack it altogether. In order to investigate the importance of heterochromatin at centromeres, we used epigenetic engineering of a synthetic alphoidtetO human artificial chromosome (HAC), to which chimeric proteins can be targeted. By tethering the JMJD2D demethylase (also known as KDM4D), we removed heterochromatin mark H3K9me3 (histone 3 lysine 9 trimethylation) specifically from the HAC centromere. This caused no short-term defects, but long-term tethering reduced HAC centromere protein levels and triggered HAC mis-segregation. However, centromeric CENP-A was maintained at a reduced level. Furthermore, HAC centromere function was compatible with an alternative low-H3K9me3, high-H3K27me3 chromatin signature, as long as residual levels of H3K9me3 remained. When JMJD2D was released from the HAC, H3K9me3 levels recovered over several days back to initial levels along with CENP-A and CENP-C centromere levels, and mitotic segregation fidelity. Our results suggest that a minimal level of heterochromatin is required to stabilize mitotic centromere function but not for maintaining centromere epigenetic memory, and that a homeostatic pathway maintains heterochromatin at centromeres.This article has an associated First Person interview with the first authors of the paper.


Subject(s)
Chromosomes, Artificial, Human , Centromere/genetics , Centromere/metabolism , Centromere Protein A/genetics , Centromere Protein A/metabolism , Chromosome Segregation/genetics , Chromosomes, Artificial, Human/genetics , Chromosomes, Artificial, Human/metabolism , Epigenesis, Genetic , Heterochromatin , Histones/genetics , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases , Kinetochores/metabolism
6.
Mol Cell Biochem ; 459(1-2): 83-93, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31089935

ABSTRACT

It is well known that Rho family small GTPases (Rho GTPase) has a role of molecular switch in intracellular signal transduction. The switch cycle between GTP-bound and GDP-bound state of Rho GTPase regulates various cell responses such as gene transcription, cytoskeletal rearrangements, and vesicular trafficking. Rho GTPase-specific guanine nucleotide exchange factors (RhoGEFs) are regulated by various extracellular stimuli and activates Rho GTPase such as RhoA, Rac1, and Cdc42. The molecular mechanisms that regulate RhoGEFs are poorly understood. Our studies reveal that Dbl's big sister (DBS), a RhoGEF for Cdc42 and RhoA, is phosphorylated at least on tyrosine residues at 479, 660, 727, and 926 upon stimulation by SRC signaling and that the phosphorylation at Tyr-660 is particularly critical for the serum response factor (SRF)-dependent transcriptional activation of DBS by Ephrin type-B receptor 2 (EPHB2)/SRC signaling. In addition, our studies also reveal that the phosphorylation of Tyr-479 and Tyr-660 on DBS leads to the actin cytoskeletal reorganization by EPHB2/SRC signaling. These findings are thought to be useful for understanding pathological conditions related to DBS such as cancer and non-syndromic autism in future.


Subject(s)
Receptor, EphB2/metabolism , Signal Transduction , cdc42 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism , src-Family Kinases/metabolism , HEK293 Cells , Humans , Receptor, EphB2/genetics , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , cdc42 GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/genetics , src-Family Kinases/genetics
7.
Cell Signal ; 61: 93-107, 2019 09.
Article in English | MEDLINE | ID: mdl-31100317

ABSTRACT

The Rho family small GTPases mediate cell responses through actin cytoskeletal rearrangement. We previously reported that PLEKHG2, a Rho-specific guanine nucleotide exchange factor, is regulated via interaction with several proteins. We found that PLEKHG2 interacted with non-receptor tyrosine kinase ABL1, but the cellular function remains unclear. Here, we show that the interaction between PLEKHG2 and ABL1 attenuated the PLEKHG2-induced serum response element-dependent gene transcription in a tyrosine phosphorylation-independent manner. PLEKHG2 and ABL1 were co-localized and accumulated within cells co-expressing PLEKHG2 and ABL1. The cellular fractionation analysis suggested that the accumulation involved actin cytoskeletal reorganization. We also revealed that the co-expression of PLEKHG2 with ABL1, but not BCR-ABL, suppressed cell growth and synergistically enhanced NF-κB-dependent gene transcription. The cell growth suppression was canceled by co-expression with IκBα, a member of the NF-κB inhibitor protein family. This study suggests that the interaction between PLEKHG2 and ABL1 suppresses cell growth through intracellular protein accumulation via the NF-κB signaling pathway.


Subject(s)
Cell Proliferation/genetics , Guanine Nucleotide Exchange Factors/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-abl/metabolism , Signal Transduction/genetics , Actin Cytoskeleton/metabolism , Actins/metabolism , Fusion Proteins, bcr-abl/metabolism , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , NF-KappaB Inhibitor alpha/metabolism , Phosphorylation/genetics , Protein Aggregates/genetics , Protein Binding/genetics , Proto-Oncogene Proteins c-abl/genetics , Serum Response Element/genetics , Transcription, Genetic/genetics , Transfection
8.
Small GTPases ; 10(5): 361-366, 2019 09.
Article in English | MEDLINE | ID: mdl-28489964

ABSTRACT

PLEKHG2 is a Gßγ- and Gαs-dependent guanine nucleotide exchange factor for Rac1 and Cdc42 small GTPases and has been shown to mediate signaling pathways such as those for actin cytoskeletal reorganization and serum response element (SRE)-dependent gene transcription. We have shown that the four-and-a-half LIM domains (FHL) 1 acts as a positive regulator of PLEKHG2. Here, we evaluated the other FHL family members and found that the FHL1A specifically regulate the PLEKHG2 activity. Moreover, FHL1A further enhanced Gßγ- and PLEKHG2-induced SRE-dependent gene transcription, whereas FHL1A partially restored the attenuated PLEKHG2-induced SRE-dependent gene transcription by Gαs. Our results suggest that FHL1A specifically interacts with PLEKHG2 to regulate a function of PLEKHG2 that is modified by the interaction of Gßγ and Gαs.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/metabolism , Muscle Proteins/metabolism , Serum Response Element , Transcription, Genetic , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/genetics , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Muscle Proteins/genetics , Protein Domains , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Cell Signal ; 32: 115-123, 2017 04.
Article in English | MEDLINE | ID: mdl-28108261

ABSTRACT

PLEKHG2 is a Gßγ-dependent guanine nucleotide exchange factor (GEF) for the small GTPases Rac and Cdc42, and has been shown to mediate signalling pathways such as actin cytoskeleton reorganization and serum response element (SRE)-dependent gene transcription. Here we show that the constitutively active mutant of the Gαs subunit significantly attenuated PLEKHG2-induced SRE-mediated gene transcription. Strikingly, we observed that the constitutive activation of endogenous Gαs by treatment with CTx caused a similar inhibitory effect on PLEKHG2-induced activation of SRE. However, both the enforced expression of the catalytic subunit ß of protein kinase A and the treatment with dibutyl-cyclic AMP failed to mimic the inhibitory effect of Gαs on PLEKHG2. Furthermore, the dominant negative mutant of protein kinase A had no effect on PLEKHG2-mediated SRE activation. Performing immunoprecipitation and an in vitro pulldown assay, we found that PLEKHG2 directly interacted with the active form of the Gαs subunit in cells. The interaction between PLEKHG2 and Gαs required the N-terminal region of PLEKHG2, which includes the DH domain, a functional domain of GEF, suggesting that Gαs directly masks the DH domain of PLEKHG2. In a previous study, we reported that Gßγ accelerates PLEKHG2-mediated SRE-dependent gene transcription. Interestingly, Gαs also inhibited the hyperactivation of SRE induced by the co-expression of Gßγ and PLEKHG2; however, Gαs and Gßγ bind to different regions of PLEKHG2. This is the first report to show that PLEKHG2 is a novel effector of Gαs, and is negatively regulated by the Gαs subunit through direct interaction.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , HEK293 Cells , Humans , Models, Biological , Protein Binding , Serum Response Element/genetics , Transcription, Genetic
10.
J Biol Chem ; 291(48): 25227-25238, 2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27765816

ABSTRACT

PLEKHG2/FLJ00018 is a Gßγ-dependent guanine nucleotide exchange factor for the small GTPases Rac and Cdc42 and has been shown to mediate the signaling pathways leading to actin cytoskeleton reorganization. Here we showed that the zinc finger domain-containing protein four-and-a-half LIM domains 1 (FHL1) acts as a novel interaction partner of PLEKHG2 by the yeast two-hybrid system. Among the isoforms of FHL1 (i.e. FHL1A, FHL1B, and FHL1C), FHL1A and FHL1B interacted with PLEKHG2. We found that there was an FHL1-binding region at amino acids 58-150 of PLEKHG2. The overexpression of FHL1A but not FHL1B enhanced the PLEKHG2-induced serum response element-dependent gene transcription. The co-expression of FHL1A and Gßγ synergistically enhanced the PLEKHG2-induced serum response element-dependent gene transcription. Increased transcription activity was decreased by FHL1A knock-out with the CRISPR/Cas9 system. Compared with PLEKHG2-expressing cells, the number and length of finger-like protrusions were increased in PLEKHG2-, Gßγ-, and FHL1A-expressing cells. Our results provide evidence that FHL1A interacts with PLEKHG2 and regulates cell morphological change through the activity of PLEKHG2.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/metabolism , Muscle Proteins/metabolism , Serum Response Element/physiology , Transcription, Genetic/physiology , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/genetics , Muscle Proteins/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism
11.
J Mol Biol ; 428(20): 3885-3902, 2016 10 09.
Article in English | MEDLINE | ID: mdl-27534817

ABSTRACT

Eukaryotic gene expression is regulated in the context of chromatin. Dynamic changes in post-translational histone modification are thought to play key roles in fundamental cellular functions such as regulation of the cell cycle, development, and differentiation. To elucidate the relationship between histone modifications and cellular functions, it is important to monitor the dynamics of modifications in single living cells. A genetically encoded probe called mintbody (modification-specific intracellular antibody), which is a single-chain variable fragment tagged with a fluorescent protein, has been proposed as a useful visualization tool. However, the efficacy of intracellular expression of antibody fragments has been limited, in part due to different environmental conditions in the cytoplasm compared to the endoplasmic reticulum where secreted proteins such as antibodies are folded. In this study, we have developed a new mintbody specific for histone H4 Lys20 monomethylation (H4K20me1). The specificity of the H4K20me1-mintbody in living cells was verified using yeast mutants and mammalian cells in which this target modification was diminished. Expression of the H4K20me1-mintbody allowed us to monitor the oscillation of H4K20me1 levels during the cell cycle. Moreover, dosage-compensated X chromosomes were visualized using the H4K20me1-mintbody in mouse and nematode cells. Using X-ray crystallography and mutational analyses, we identified critical amino acids that contributed to stabilization and/or proper folding of the mintbody. Taken together, these data provide important implications for future studies aimed at developing functional intracellular antibodies. Specifically, the H4K20me1-mintbody provides a powerful tool to track this particular histone modification in living cells and organisms.


Subject(s)
Histones/analysis , Protein Processing, Post-Translational , Single-Cell Analysis/methods , Animals , Cells, Cultured , Crystallography, X-Ray , DNA Mutational Analysis , Gene Expression , Genes, Reporter , Luminescent Proteins/analysis , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Methylation , Mice , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Single-Chain Antibodies/analysis , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics
12.
Dev Cell ; 37(5): 413-27, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27270040

ABSTRACT

Centromere chromatin containing histone H3 variant CENP-A is required for accurate chromosome segregation as a foundation for kinetochore assembly. Human centromere chromatin assembles on a part of the long α-satellite (alphoid) DNA array, where it is flanked by pericentric heterochromatin. Heterochromatin spreads into adjacent chromatin and represses gene expression, and it can antagonize centromere function or CENP-A assembly. Here, we demonstrate an interaction between CENP-A assembly factor M18BP1 and acetyltransferase KAT7/HBO1/MYST2. Knocking out KAT7 in HeLa cells reduced centromeric CENP-A assembly. Mitotic chromosome misalignment and micronuclei formation increased in the knockout cells and were enhanced when the histone H3-K9 trimethylase Suv39h1 was overproduced. Tethering KAT7 to an ectopic alphoid DNA integration site removed heterochromatic H3K9me3 modification and was sufficient to stimulate new CENP-A or histone H3.3 assembly. Thus, KAT7-containing acetyltransferases associating with the Mis18 complex provides competence for histone turnover/exchange activity on alphoid DNA and prevents Suv39h1-mediated heterochromatin invasion into centromeres.


Subject(s)
Autoantigens/metabolism , Centromere/metabolism , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Histone Acetyltransferases/metabolism , Methyltransferases/metabolism , Repressor Proteins/metabolism , Centromere Protein A , Chromosome Segregation , DNA-Binding Proteins/metabolism , G1 Phase , Gene Knockout Techniques , HeLa Cells , Histones/metabolism , Humans , Lysine/metabolism , Methylation , Multiprotein Complexes/metabolism , Nuclear Proteins/metabolism , Protein Stability , Protein Subunits/metabolism , Trans-Activators/metabolism
13.
J Cell Sci ; 128(24): 4572-87, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26527398

ABSTRACT

Although it is generally accepted that chromatin containing the histone H3 variant CENP-A is an epigenetic mark maintaining centromere identity, the pathways leading to the formation and maintenance of centromere chromatin remain unclear. We previously generated human artificial chromosomes (HACs) whose centromeres contain a synthetic alpha-satellite (alphoid) DNA array containing the tetracycline operator (alphoid(tetO)). We also obtained cell lines bearing the alphoid(tetO) array at ectopic integration sites on chromosomal arms. Here, we have examined the regulation of CENP-A assembly at centromeres as well as de novo assembly on the ectopic arrays by tethering tetracycline repressor (tetR) fusions of substantial centromeric factors and chromatin modifiers. This analysis revealed four classes of factors that influence CENP-A assembly. Interestingly, many kinetochore structural components induced de novo CENP-A assembly at the ectopic site. We showed that these components work by recruiting CENP-C and subsequently recruiting M18BP1. Furthermore, we found that CENP-I can also recruit M18BP1 and, as a consequence, enhances M18BP1 assembly on centromeres in the downstream of CENP-C. Thus, we suggest that CENP-C and CENP-I are key factors connecting kinetochore to CENP-A assembly.


Subject(s)
Autoantigens/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Kinetochores/metabolism , Autoantigens/genetics , Centromere Protein A , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , HeLa Cells , Humans
14.
Nature ; 516(7530): 272-5, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25252976

ABSTRACT

In eukaryotic cells, post-translational histone modifications have an important role in gene regulation. Starting with early work on histone acetylation, a variety of residue-specific modifications have now been linked to RNA polymerase II (RNAP2) activity, but it remains unclear if these markers are active regulators of transcription or just passive byproducts. This is because studies have traditionally relied on fixed cell populations, meaning temporal resolution is limited to minutes at best, and correlated factors may not actually be present in the same cell at the same time. Complementary approaches are therefore needed to probe the dynamic interplay of histone modifications and RNAP2 with higher temporal resolution in single living cells. Here we address this problem by developing a system to track residue-specific histone modifications and RNAP2 phosphorylation in living cells by fluorescence microscopy. This increases temporal resolution to the tens-of-seconds range. Our single-cell analysis reveals histone H3 lysine-27 acetylation at a gene locus can alter downstream transcription kinetics by as much as 50%, affecting two temporally separate events. First acetylation enhances the search kinetics of transcriptional activators, and later the acetylation accelerates the transition of RNAP2 from initiation to elongation. Signatures of the latter can be found genome-wide using chromatin immunoprecipitation followed by sequencing. We argue that this regulation leads to a robust and potentially tunable transcriptional response.


Subject(s)
Histones/chemistry , Histones/metabolism , RNA Polymerase II/metabolism , Single-Cell Analysis , Transcription, Genetic , Acetylation , Animals , Cell Line, Tumor , Cell Survival , Chromatin Immunoprecipitation , Enzyme Activation , Genome/genetics , Kinetics , Lysine/metabolism , Mice , Microscopy, Fluorescence , Phosphorylation , Time Factors , Transcription Elongation, Genetic , Transcription Initiation, Genetic
15.
Cancer Res ; 74(9): 2465-75, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24788099

ABSTRACT

The SWI/SNF chromatin-remodeling family contains various protein complexes, which regulate gene expression during cellular development and influence DNA damage response in an ATP- and complex-dependent manner, of which details remain elusive. Recent human genome sequencing of various cancer cells revealed frequent mutations in SWI/SNF factors, especially ARID1A, a variant subunit in the BRG1-associated factor (BAF) complex of the SWI/SNF family. We combined live-cell analysis and gene-suppression experiments to show that suppression of either ARID1A or its paralog ARID1B led to reduced nonhomologous end joining activity of DNA double-strand breaks (DSB), decreased accumulation of KU70/KU80 proteins at DSB, and sensitivity to ionizing radiation, as well as to cisplatin and UV. Thus, in contrast to transcriptional regulation, both ARID1 proteins are required for cellular resistance to various types of DNA damage, including DSB. The suppression of other SWI/SNF factors, namely SNF5, BAF60a, BAF60c, BAF155, or BAF170, exhibits a similar phenotype. Of these factors, ARID1A, ARID1B, SNF5, and BAF60c are necessary for the immediate recruitment of the ATPase subunit of the SWI/SNF complex to DSB, arguing that both ARID1 proteins facilitate the damage response of the complex. Finally, we found interdependent protein stability among the SWI/SNF factors, suggesting their direct interaction within the complex and the reason why multiple factors are frequently lost in parallel in cancer cells. Taken together, we show that cancer cells lacking in the expression of certain SWI/SNF factors, including ARID1A, are deficient in DNA repair and potentially vulnerable to DNA damage.


Subject(s)
DNA Breaks, Double-Stranded , DNA-Binding Proteins/physiology , Nuclear Proteins/physiology , Transcription Factors/physiology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , DNA End-Joining Repair , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm , Humans , Protein Stability , Protein Subunits/metabolism , Radiation Tolerance , Transcription Factors/metabolism
16.
Congenit Anom (Kyoto) ; 54(1): 63-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24588779

ABSTRACT

Follistatin-like 5 (Fstl5), a member of the follistatin family of genes, encodes a secretory glycoprotein. Previous studies revealed that other members of this family including Fstl1 and Fstl3 play an essential role in development, homeostasis, and congenital disorders. However, the in vivo function of Fstl5 is poorly understood. To gain insight into the function of Fstl5 in the mouse central nervous system, we examined the Fstl5 expression pattern in the adult mouse brain. The results of in situ hybridization analysis showed a highly restricted pattern of Fstl5, namely, with localization in the olfactory system, hippocampal CA3 area and granular cell layer of the cerebellum. Restricted expression in the olfactory system suggests a possible role for Fstl5 in maintaining odor perception.


Subject(s)
Follistatin-Related Proteins/biosynthesis , Follistatin/genetics , Odorants , Olfactory Pathways , Animals , Follistatin/biosynthesis , Follistatin-Related Proteins/genetics , Gene Expression Regulation/genetics , Hippocampus/metabolism , Humans , In Situ Hybridization , Mice , RNA, Messenger/biosynthesis
17.
J Biol Chem ; 289(14): 10045-56, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24554703

ABSTRACT

FLJ00018/PLEKHG2 is a guanine nucleotide exchange factor for the small GTPases Rac and Cdc42 and has been shown to mediate the signaling pathways leading to actin cytoskeleton reorganization. The function of FLJ00018 is regulated by the interaction of heterotrimeric GTP-binding protein Gßγ subunits or cytosolic actin. However, the details underlying the molecular mechanisms of FLJ00018 activation have yet to be elucidated. In the present study we show that FLJ00018 is phosphorylated and activated by ß1-adrenergic receptor stimulation-induced EGF receptor (EGFR) transactivation in addition to Gßγ signaling. FLJ00018 is also phosphorylated and activated by direct EGFR stimulation. The phosphorylation of FLJ00018 by EGFR stimulation is mediated by the Ras/mitogen-activated protein kinase (MAPK) pathway. Through deletion and site-directed mutagenesis studies, we have identified Thr-680 as the major site of phosphorylation by EGFR stimulation. FLJ00018 T680A, in which the phosphorylation site is replaced by alanine, showed a limited response of the Neuro-2a cell morphology to EGF stimulation. Our results provide evidence that stimulation of the Ras/MAPK pathway by EGFR results in FLJ00018 phosphorylation at Thr-680, which in turn controls changes in cell shape.


Subject(s)
ErbB Receptors/metabolism , Guanine Nucleotide Exchange Factors/metabolism , MAP Kinase Signaling System/physiology , Transcriptional Activation/physiology , Amino Acid Substitution , Animals , Cell Shape , ErbB Receptors/genetics , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Mice , Mutagenesis, Site-Directed , Mutation, Missense , NIH 3T3 Cells , Phosphorylation
18.
Cell Signal ; 26(4): 691-6, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24378532

ABSTRACT

PLEKHG2/FLJ00018, a Rho family-specific guanine nucleotide exchange factor (RhoGEF), is activated by heterotrimeric GTP-binding protein (G protein) Gßγ subunits, and in turn activates the small G protein Rac and Cdc42, which have been shown to mediate signaling pathways leading to actin cytoskeletal reorganization. In the present study, we show that co-expression of the constitutively active mutant of cSrc, a non-receptor tyrosine kinase, and PLEKHG2 induced the tyrosine phosphorylation of PLEKHG2 in HEK293 cells. Through deletion and base substitution mutagenesis we have identified Tyr489 of PLEKHG2 as the site phosphorylated by cSrc. Furthermore, using a high-throughput src homology 2 (SH2) domain binding assay, the SH2 domain of ABL1 and the PI 3-kinse regulator subunit (PIK3R3) were identified as candidates for the binding partner of tyrosine-phosphorylated PLEKHG2. The interaction between PLEKHG2 and the full-length of PIK3R3, but not ABL1, occurs in a tyrosine-phosphorylation-dependent manner. Furthermore, PLEKHG2 is tyrosine phosphorylated at Tyr489 by ephrinB2 receptor signaling via cSrc. Investigation of the physiological function of tyrosine phosphorylation at Tyr489 in PLEKHG2 remains a subject for future studies.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Receptor, EphB2/metabolism , src-Family Kinases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , CSK Tyrosine-Protein Kinase , Cytoskeletal Proteins , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Mutagenesis , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Binding , Signal Transduction , Tyrosine/metabolism , src Homology Domains , src-Family Kinases/genetics
19.
Biol Pharm Bull ; 36(7): 1204-7, 2013.
Article in English | MEDLINE | ID: mdl-23811570

ABSTRACT

FLJ00018, a heterotrimeric guanosine 5'-triphosphate (GTP)-binding protein (G protein) Gßγ subunit-activated guanine nucleotide exchange factor for Rho family small GTPases, regulates cellular responses, including cell morphological changes and gene transcriptional regulation, and targets the cellular membranes. FLJ00018 contains a Dbl homology (DH) domain in addition to a pleckstrin homology (PH) domain. Here we show that the PH domain of FLJ00018 is required for FLJ00018-induced, serum response element-dependent gene transcription. Although the PH domain of KIAA1415/P-Rex1, another Gßγ subunit-activated guanine nucleotide exchange factor for Rho family small GTPases, binds to phosphatidylinositol 3,4,5-triphosphate and phosphatidylinositol 3,4-bisphosphate, the PH domain of FLJ00018 binds to polyphosphoinositides including phosphatidylinositol 4,5-bisphosphate, and phosphatidic acid. These results suggest that FLJ00018 is targeted via its PH domain to cellular membranes.


Subject(s)
Cell Membrane/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Membrane Lipids/metabolism , Cell Fractionation , DNA, Complementary/genetics , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Luciferases/genetics , Plasmids , Protein Binding , Rho Guanine Nucleotide Exchange Factors , Serum Response Element/physiology , Transcription, Genetic
20.
Mol Cell Biol ; 33(12): 2447-57, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23589328

ABSTRACT

The p53 tumor suppressor protein is a transcription factor controlling various outcomes, such as growth arrest and apoptosis, through the regulation of different sets of target genes. The nuclear mitotic apparatus protein (NuMA) plays important roles in spindle pole organization during mitosis and in chromatin regulation in the nucleus during interphase. Although NuMA has been shown to colocalize with several nuclear proteins, including high-mobility-group proteins I and Y and GAS41, the role of NuMA during interphase remains unclear. Here we report that NuMA binds to p53 to modulate p53-mediated transcription. Acute and partial ablation of NuMA attenuates the induction of the proarrested p21 gene following DNA damage, subsequently causing impaired cell cycle arrest. Interestingly, NuMA knockdown had little effect on the induction of the p53-dependent proapoptotic PUMA gene. Furthermore, NuMA is required for the recruitment of cyclin-dependent kinase 8 (Cdk8), a component of the Mediator complex and a promoter of p53-mediated p21 gene function. These data demonstrate that NuMA is critical for the target selectivity of p53-mediated transcription.


Subject(s)
Antigens, Nuclear/metabolism , Cyclin-Dependent Kinase 8/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Antigens, Nuclear/genetics , Breast Neoplasms/metabolism , Cell Cycle Checkpoints , Cell Cycle Proteins , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , Female , Fibrosarcoma/metabolism , Humans , Lung Neoplasms/metabolism , Nuclear Matrix-Associated Proteins/genetics , Protein Binding , RNA Interference , RNA, Small Interfering , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...