Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
EBioMedicine ; 104: 105181, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838469

ABSTRACT

BACKGROUND: Although several SARS-CoV-2-related coronaviruses (SC2r-CoVs) were discovered in bats and pangolins, the differences in virological characteristics between SARS-CoV-2 and SC2r-CoVs remain poorly understood. Recently, BANAL-20-236 (B236) was isolated from a rectal swab of Malayan horseshoe bat and was found to lack a furin cleavage site (FCS) in the spike (S) protein. The comparison of its virological characteristics with FCS-deleted SARS-CoV-2 (SC2ΔFCS) has not been conducted yet. METHODS: We prepared human induced pluripotent stem cell (iPSC)-derived airway and lung epithelial cells and colon organoids as human organ-relevant models. B236, SARS-CoV-2, and artificially generated SC2ΔFCS were used for viral experiments. To investigate the pathogenicity of B236 in vivo, we conducted intranasal infection experiments in hamsters. FINDINGS: In human iPSC-derived airway epithelial cells, the growth of B236 was significantly lower than that of the SC2ΔFCS. A fusion assay showed that the B236 and SC2ΔFCS S proteins were less fusogenic than the SARS-CoV-2 S protein. The infection experiment in hamsters showed that B236 was less pathogenic than SARS-CoV-2 and even SC2ΔFCS. Interestingly, in human colon organoids, the growth of B236 was significantly greater than that of SARS-CoV-2. INTERPRETATION: Compared to SARS-CoV-2, we demonstrated that B236 exhibited a tropism toward intestinal cells rather than respiratory cells. Our results are consistent with a previous report showing that B236 is enterotropic in macaques. Altogether, our report strengthens the assumption that SC2r-CoVs in horseshoe bats replicate primarily in the intestinal tissues rather than respiratory tissues. FUNDING: This study was supported in part by AMED ASPIRE (JP23jf0126002, to Keita Matsuno, Kazuo Takayama, and Kei Sato); AMED SCARDA Japan Initiative for World-leading Vaccine Research and Development Centers "UTOPIA" (JP223fa627001, to Kei Sato), AMED SCARDA Program on R&D of new generation vaccine including new modality application (JP223fa727002, to Kei Sato); AMED SCARDA Hokkaido University Institute for Vaccine Research and Development (HU-IVReD) (JP223fa627005h0001, to Takasuke Fukuhara, and Keita Matsuno); AMED Research Program on Emerging and Re-emerging Infectious Diseases (JP21fk0108574, to Hesham Nasser; JP21fk0108493, to Takasuke Fukuhara; JP22fk0108617 to Takasuke Fukuhara; JP22fk0108146, to Kei Sato; JP21fk0108494 to G2P-Japan Consortium, Keita Matsuno, Shinya Tanaka, Terumasa Ikeda, Takasuke Fukuhara, and Kei Sato; JP21fk0108425, to Kazuo Takayama and Kei Sato; JP21fk0108432, to Kazuo Takayama, Takasuke Fukuhara and Kei Sato; JP22fk0108534, Terumasa Ikeda, and Kei Sato; JP22fk0108511, to Yuki Yamamoto, Terumasa Ikeda, Keita Matsuno, Shinya Tanaka, Kazuo Takayama, Takasuke Fukuhara, and Kei Sato; JP22fk0108506, to Kazuo Takayama and Kei Sato); AMED Research Program on HIV/AIDS (JP22fk0410055, to Terumasa Ikeda; and JP22fk0410039, to Kei Sato); AMED Japan Program for Infectious Diseases Research and Infrastructure (JP22wm0125008 to Keita Matsuno); AMED CREST (JP21gm1610005, to Kazuo Takayama; JP22gm1610008, to Takasuke Fukuhara; JST PRESTO (JPMJPR22R1, to Jumpei Ito); JST CREST (JPMJCR20H4, to Kei Sato); JSPS KAKENHI Fund for the Promotion of Joint International Research (International Leading Research) (JP23K20041, to G2P-Japan Consortium, Keita Matsuno, Takasuke Fukuhara and Kei Sato); JST SPRING (JPMJSP2108 to Shigeru Fujita); JSPS KAKENHI Grant-in-Aid for Scientific Research C (22K07103, to Terumasa Ikeda); JSPS KAKENHI Grant-in-Aid for Scientific Research B (21H02736, to Takasuke Fukuhara); JSPS KAKENHI Grant-in-Aid for Early-Career Scientists (22K16375, to Hesham Nasser; 20K15767, to Jumpei Ito); JSPS Core-to-Core Program (A. Advanced Research Networks) (JPJSCCA20190008, to Kei Sato); JSPS Research Fellow DC2 (22J11578, to Keiya Uriu); JSPS Research Fellow DC1 (23KJ0710, to Yusuke Kosugi); JSPS Leading Initiative for Excellent Young Researchers (LEADER) (to Terumasa Ikeda); World-leading Innovative and Smart Education (WISE) Program 1801 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (to Naganori Nao); Ministry of Health, Labour and Welfare (MHLW) under grant 23HA2010 (to Naganori Nao and Keita Matsuno); The Cooperative Research Program (Joint Usage/Research Center program) of Institute for Life and Medical Sciences, Kyoto University (to Kei Sato); International Joint Research Project of the Institute of Medical Science, the University of Tokyo (to Terumasa Ikeda and Takasuke Fukuhara); The Tokyo Biochemical Research Foundation (to Kei Sato); Takeda Science Foundation (to Terumasa Ikeda and Takasuke Fukuhara); Mochida Memorial Foundation for Medical and Pharmaceutical Research (to Terumasa Ikeda); The Naito Foundation (to Terumasa Ikeda); Hokuto Foundation for Bioscience (to Tomokazu Tamura); Hirose Foundation (to Tomokazu Tamura); and Mitsubishi Foundation (to Kei Sato).

4.
J Infect Chemother ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38331251

ABSTRACT

Seronegative human immunodeficiency virus (HIV) infection, where an HIV-specific antibody response is lacking even in chronic or late-stage HIV infections, is extremely rare. Here, we report the case of a 50-year-old Japanese man presenting with Pneumocystis pneumonia who did not produce antibodies against HIV-1 until the initiation of antiretroviral therapy (ART). Fourth-generation antigen-antibody testing temporarily reverted from weakly positive to negative soon after initiating ART, likely due to a reduction in viral load (assessed by p24 antigen levels). His HIV-1 antibody titers remained low or indeterminate even after four years of ART. A literature review suggested that the absence of HIV-1-specific antibody production may be associated with unimpeded HIV replication and rapid CD4+ T cell decline. Seronegative HIV infection can lead to deferred diagnosis and treatment, thereby increasing the risk of transmitting the virus to others or developing opportunistic illnesses. It is important to combine multiple tests for diagnosis, depending on the medical condition. Further studies are required to investigate the host factors involved in the production of HIV-1-specific antibodies.

6.
Cell Host Microbe ; 32(2): 170-180.e12, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38280382

ABSTRACT

In late 2023, several SARS-CoV-2 XBB descendants, notably EG.5.1, were predominant worldwide. However, a distinct SARS-CoV-2 lineage, the BA.2.86 variant, also emerged. BA.2.86 is phylogenetically distinct from other Omicron sublineages, accumulating over 30 amino acid mutations in its spike protein. Here, we examined the virological characteristics of the BA.2.86 variant. Our epidemic dynamics modeling suggested that the relative reproduction number of BA.2.86 is significantly higher than that of EG.5.1. Additionally, four clinically available antivirals were effective against BA.2.86. Although the fusogenicity of BA.2.86 spike is similar to that of the parental BA.2 spike, the intrinsic pathogenicity of BA.2.86 in hamsters was significantly lower than that of BA.2. Since the growth kinetics of BA.2.86 are significantly lower than those of BA.2 both in vitro and in vivo, the attenuated pathogenicity of BA.2.86 is likely due to its decreased replication capacity. These findings uncover the features of BA.2.86, providing insights for control and treatment.


Subject(s)
COVID-19 , Animals , Cricetinae , SARS-CoV-2/genetics , Amino Acids , Kinetics , Mutation
7.
J Virol ; 97(10): e0101123, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37796123

ABSTRACT

IMPORTANCE: Most studies investigating the characteristics of emerging SARS-CoV-2 variants have been focusing on mutations in the spike proteins that affect viral infectivity, fusogenicity, and pathogenicity. However, few studies have addressed how naturally occurring mutations in the non-spike regions of the SARS-CoV-2 genome impact virological properties. In this study, we proved that multiple SARS-CoV-2 Omicron BA.2 mutations, one in the spike protein and another downstream of the spike gene, orchestrally characterize this variant, shedding light on the importance of Omicron BA.2 mutations out of the spike protein.


Subject(s)
Genome, Viral , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Genome, Viral/genetics
8.
Drug Discov Ther ; 17(5): 304-311, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37899206

ABSTRACT

During an earlier multicenter, open-label, randomized controlled trial designed to evaluate the effectiveness of high-dose inhaled ciclesonide in patients with asymptomatic or mild coronavirus disease 2019 (COVID-19), we observed that worsening of shadows on CT without worsening of clinical symptoms was more common with ciclesonide. The present study sought to determine if an association exists between worsening CT shadows and impaired antibody production in patients treated with inhaled ciclesonide. Eighty-nine of the 90 patients in the original study were prospectively enrolled. After exclusions, there were 36 patients each in the ciclesonide and control groups. We analyzed antibody titers against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein at various time points. Changes in viral load during treatment were compared. There was no significant difference in age, sex, body mass index, background clinical characteristics, or symptoms between the two groups. Although evaluation on day 8 suggested a greater tendency for worsening shadows on CT in the ciclesonide group (p = 0.072), there was no significant difference between them in the ability to produce antibodies (p = 0.379) or the maximum antibody titer during the clinical course. In both groups, worsening CT shadows and higher viral loads were observed on days 1-8, suggesting ciclesonide does not affect clearance of the virus (p = 0.134). High-dose inhaled ciclesonide did not impair production of antibodies against SARS-CoV-2 or affect elimination of the virus, suggesting that this treatment can be used safely in patients with COVID-19 patients who use inhaled steroids for asthma and other diseases.


Subject(s)
Asthma , COVID-19 , Pregnenediones , Humans , SARS-CoV-2 , Pregnenediones/therapeutic use
10.
Antiviral Res ; 216: 105671, 2023 08.
Article in English | MEDLINE | ID: mdl-37451629

ABSTRACT

The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially passaged in vitro in the presence of RdRP inhibitors (remdesivir and molnupiravir) and 3CLpro inhibitors (nirmatrelvir and lufotrelvir) to detect SARS-CoV-2 escape mutants. After five passages with 3CLpro inhibitors, mutant viruses that escaped from 3CLpro inhibitors emerged; however, in the presence of RdRP inhibitors all variants disappeared within 2-4 passages. Our findings suggest that the frequency of SARS-CoV-2 mutant escape from RdRP inhibitors is lower than that from 3CLpro inhibitors. We also found that Delta variants were more likely to acquire amino acid substitutions associated with resistance to 3CLpro inhibitors under the selective pressure of this drug compared with Omicron variants.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Leucine , RNA-Dependent RNA Polymerase/genetics , Protease Inhibitors/pharmacology
12.
J Med Virol ; 95(6): e28886, 2023 06.
Article in English | MEDLINE | ID: mdl-37350032

ABSTRACT

Hepatitis E virus (HEV) is an emerging causative agent of acute hepatitis. To clarify the epidemiology of HEV and characterize the genetic diversity of the virus in Japan, nationwide enhanced surveillance and molecular characterization studies of HEV in Japan were undertaken from 2014 to 2021. In total, 2770 hepatitis E cases were reported, of which 88% were domestic cases, while only 4.1% represented cases following infection abroad. In addition, 57% of domestic infections occurred in males aged in their 40s-70s. For domestic cases, infection via pork meat consumption continued to be the most reported route. Analysis of the 324 sequences detected between 2016 and 2021 showed that the majority of domestic HEV strains belong to Genotype 3a (G3a) and G3b. In contrast, six of eight cases of G1 HEV reflected infection abroad. Our results suggest that HEV is circulating widely in Japan, with genotypes G3a and G3b being most prevalent. Continued surveillance is necessary to monitor future trends and changes in the epidemiology of HEV in Japan.


Subject(s)
Hepatitis E virus , Hepatitis E , Male , Humans , Hepatitis E/epidemiology , Japan/epidemiology , Phylogeny , Hepatitis E virus/genetics , Genotype , RNA, Viral/genetics
13.
Nat Commun ; 14(1): 2671, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169744

ABSTRACT

In late 2022, various Omicron subvariants emerged and cocirculated worldwide. These variants convergently acquired amino acid substitutions at critical residues in the spike protein, including residues R346, K444, L452, N460, and F486. Here, we characterize the convergent evolution of Omicron subvariants and the properties of one recent lineage of concern, BQ.1.1. Our phylogenetic analysis suggests that these five substitutions are recurrently acquired, particularly in younger Omicron lineages. Epidemic dynamics modelling suggests that the five substitutions increase viral fitness, and a large proportion of the fitness variation within Omicron lineages can be explained by these substitutions. Compared to BA.5, BQ.1.1 evades breakthrough BA.2 and BA.5 infection sera more efficiently, as demonstrated by neutralization assays. The pathogenicity of BQ.1.1 in hamsters is lower than that of BA.5. Our multiscale investigations illuminate the evolutionary rules governing the convergent evolution for known Omicron lineages as of 2022.


Subject(s)
COVID-19 , Animals , Cricetinae , Phylogeny , SARS-CoV-2/genetics , Amino Acid Substitution , Biological Assay , Antibodies, Neutralizing , Antibodies, Viral
14.
Nanoscale Adv ; 5(9): 2413-2417, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37143819

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation of pH-dependent graphene oxide (GO) nanosheets is presented. The observed virus inactivation using an authentic virus (Delta variant) and different GO dispersions at pH 3, 7, and 11 suggests that the higher pH of the GO dispersion yields a better performance compared to that of GO at neutral or lower pH. The current findings can be ascribed to the pH-driven functional group change and the overall charge of GO, favorable for the attachment between GO nanosheets and virus particles.

15.
J Int AIDS Soc ; 26(5): e26086, 2023 05.
Article in English | MEDLINE | ID: mdl-37221951

ABSTRACT

INTRODUCTION: Late diagnosis of the human immunodeficiency virus (HIV) is a major concern epidemiologically, socially and for national healthcare systems. Although the association of certain demographics with late HIV diagnosis has been reported in several studies, the association of other factors, including clinical and phylogenetic factors, remains unclear. In the present study, we conducted a nationwide analysis to explore the association of demographics, clinical factors, HIV-1 subtypes/circulating recombinant form (CRFs) and genetic clustering with late HIV diagnosis in Japan, where new infections mainly occur among young men who have sex with men (MSM) in urban areas. METHODS: Anonymized data on demographics, clinical factors and HIV genetic sequences from 39.8% of people newly diagnosed with HIV in Japan were collected by the Japanese Drug Resistance HIV-1 Surveillance Network from 2003 to 2019. Factors associated with late HIV diagnosis (defined as HIV diagnosis with a CD4 count <350 cells/µl) were identified using logistic regression. Clusters were identified by HIV-TRACE with a genetic distance threshold of 1.5%. RESULTS: Of the 9422 people newly diagnosed with HIV enrolled in the surveillance network between 2003 and 2019, 7752 individuals with available CD4 count at diagnosis were included. Late HIV diagnosis was observed in 5522 (71.2%) participants. The overall median CD4 count at diagnosis was 221 (IQR: 62-373) cells/µl. Variables independently associated with late HIV diagnosis included age (adjusted odds ratio [aOR] 2.21, 95% CI 1.88-2.59, ≥45 vs. ≤29 years), heterosexual transmission (aOR 1.34, 95% CI 1.11-1.62, vs. MSM), living outside of Tokyo (aOR 1.18, 95% CI 1.05-1.32), hepatitis C virus (HCV) co-infection (aOR 1.42, 95% CI 1.01-1.98) and not belonging to a cluster (aOR 1.30, 95% CI 1.12-1.51). CRF07_BC (aOR 0.34, 95% CI 0.18-0.65, vs. subtype B) was negatively associated with late HIV diagnosis. CONCLUSIONS: In addition to demographic factors, HCV co-infection, HIV-1 subtypes/CRFs and not belonging to a cluster were independently associated with late HIV diagnosis in Japan. These results imply the need for public health programmes aimed at the general population, including but not limited to key populations, to encourage HIV testing.


Subject(s)
HIV Infections , HIV-1 , Hepatitis C , Sexual and Gender Minorities , Male , Humans , Hepacivirus , Homosexuality, Male , East Asian People , Phylogeny , Retrospective Studies , Cluster Analysis , Demography
16.
Nat Commun ; 14(1): 2800, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193706

ABSTRACT

In late 2022, SARS-CoV-2 Omicron subvariants have become highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged through the recombination of two cocirculating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022. XBB.1 is the variant most profoundly resistant to BA.2/5 breakthrough infection sera to date and is more fusogenic than BA.2.75. The recombination breakpoint is located in the receptor-binding domain of spike, and each region of the recombinant spike confers immune evasion and increases fusogenicity. We further provide the structural basis for the interaction between XBB.1 spike and human ACE2. Finally, the intrinsic pathogenicity of XBB.1 in male hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provides evidence suggesting that XBB is the first observed SARS-CoV-2 variant to increase its fitness through recombination rather than substitutions.


Subject(s)
COVID-19 , Animals , Cricetinae , Humans , Male , Phylogeny , SARS-CoV-2/genetics , Recombination, Genetic , Spike Glycoprotein, Coronavirus/genetics
17.
Virusdisease ; 34(1): 92-96, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37009259

ABSTRACT

To eliminate the rubella virus (RV), genetic characterization is vital for its detection, identification of endemic transmission, and diagnosis of imported cases. The 739-nucleotide region in the E1 gene has primarily been used for genotyping for epidemiological analysis. However, in the 2018-2019 RV outbreak, identical sequences were observed in patients who were not epidemiologically linked. Additionally, the 739 nt sequences from the outbreak in Tokyo in 2018-2019 were identical to RV identified in China in 2019. This suggests that this region may be insufficient to identify the detected RV strains as endemic or imported. In 62.4% of the specimens, the E1 gene sequences of the 1E RV genotype were identical. Additionally, the observed discordance of sequences from the mainly detected identical sequence in the 739-nt sequence of the E1 gene were one (31.0%), two (3.5%), three (2.6%), and four (0.23%). Moreover, a comparison of the complete structural protein-coding region suggests that the E2 gene is more diverse than the E1 and the capsid gene. Thus, conventional polymerase chain reaction (PCR) primers were developed to detect the E2 gene and improve epidemiological analysis. A comparison of the sequences identified during the RV outbreak in Tokyo revealed genetic differences in the sequences (15 of the 18 specimens). These results suggest that additional information could be obtained by simultaneously analyzing the E2 and the E1 region. The identified sequences can potentially aid in evaluating the RV strains detected during epidemiological analysis.

18.
Jpn J Infect Dis ; 76(4): 259-262, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37005274

ABSTRACT

Mpox, caused by the mpox virus (MPXV), produces symptoms similar to those of smallpox when transmitted to humans. Since 1970, this disease has been endemic, particularly in Africa. However, since May 2022, the number of patients without a history of travel to endemic areas has increased rapidly globally. Under these circumstances, in July 2022, two different real-time PCR methods were used on specimens brought to the Tokyo Metropolitan Institute of Public Health. MPXV was detected in the skin samples, and it was inferred that the virus was a West African strain. Furthermore, a more detailed analysis of the genetic characteristics of the detected MPXV using next-generation sequencing revealed that the MPXV detected in Tokyo was strain B.1, which corresponds to the same strain that is prevalent in Europe and the USA. This suggests that mpox reported for the first time in Japan was imported and related to outbreaks in Europe and the USA. Therefore, it is necessary to continue monitoring outbreaks in Japan in conjunction with global epidemics.


Subject(s)
Epidemics , Mpox (monkeypox) , Humans , Japan/epidemiology , Tokyo/epidemiology , Disease Outbreaks
19.
PLoS Pathog ; 19(3): e1011231, 2023 03.
Article in English | MEDLINE | ID: mdl-36972312

ABSTRACT

Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn't gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , RNA, Viral , COVID-19 Drug Treatment , Antiviral Agents/metabolism , Binding Sites
20.
J Infect Chemother ; 29(4): 418-421, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36690208

ABSTRACT

Outbreaks of monkeypox in Europe and North America have been reported since May 2022. At the end of July, we encountered the first two cases of monkeypox diagnosed in Japan. Case 1 was a white man who traveled to Spain where he had sexual intercourse with men. He presented to our hospital with fever, rash, and tiredness, and was diagnosed with monkeypox based on positive PCR test results from the skin lesions. He was admitted to our hospital, received tecovirimat 600 mg twice daily, and was discharged on day 15. Case 2 involved a Japanese man who visited us because of fatigue, muscle pain, headache, and oral ulcers. He was living in New York and traveled to Japan one day before presentation. He had experienced sexual intercourse with men four times during the previous month. The patient was diagnosed with monkeypox based on positive PCR results from the blood. He was admitted to our hospital, received tecovirimat 600 mg twice daily, and was discharged on day 14. These were the first two cases of monkeypox diagnosed in Japan. Based on their history and epidemiology, the viruses seem to have been imported from Europe and North America, respectively. After initiation of tecovirimat, both patients showed mild symptoms and immediate disappearance of viral DNA. The second case was notable for being diagnosed without skin rash. Our report suggests that tecovirimat could decrease the viral load rapidly, and that our prompt diagnosis contributed to the prevention of a monkeypox outbreak in Japan.


Subject(s)
Exanthema , Mpox (monkeypox) , Male , Humans , Japan , Hospitalization , Patient Discharge , Benzamides , Fatigue
SELECTION OF CITATIONS
SEARCH DETAIL
...