Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 143(43): 18131-18138, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34664969

ABSTRACT

Climate change and global energy demands motivate the search for sustainable transformations of carbon dioxide (CO2) to storable liquid fuels. Photocatalysis is a pathway for direct conversion of CO2 to CO, one step within light-powered reaction networks that could, if efficient enough, transform the solar energy conversion landscape. To date, the best performing photocatalytic CO2 reduction systems operate in nonaqueous solvents, but technologically viable solar fuels networks will likely operate in water. Here we demonstrate catalytic photoreduction of CO2 to CO in pure water at pH 6-7 with an unprecedented combination of performance parameters: turnover number (TON(CO)) = 72,484-84,101, quantum yield (QY) = 0.96-3.39%, and selectivity (SCO) > 99%, using CuInS2 colloidal quantum dots (QDs) as photosensitizers and a Co-porphyrin catalyst. At higher catalyst concentration, the system reaches QY = 3.53-5.23%. The performance of the QD-driven system greatly exceeds that of the benchmark aqueous system (926 turnovers with a quantum yield of 0.81% and selectivity of 82%), due primarily to (i) electrostatic attraction of the QD to the catalyst, which promotes fast multielectron delivery and colocalization of protons, CO2, and catalyst at the source of photoelectrons, and (ii) termination of the QD's ligand shell with free amines, which capture CO2 as carbamic acid that serves as a reservoir for CO2, effectively increasing its solubility in water, and lowers the onset potential for catalytic CO2 reduction by the Co-porphyrin. The breakthrough efficiency achieved in this work represents a nonincremental step in the realization of reaction networks for direct solar-to-fuel conversion.

2.
J Org Chem ; 86(9): 6600-6611, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33881862

ABSTRACT

Diastereoselective oxidative coupling of ketones through a silyl bis-enol ether intermediate by anodic and photocatalytic oxidation is reported. These methods provide several 1,4-diketones in good yields without the need for stoichiometric metal oxidants. The strategic use of a silicon tether enables the coupling of both aromatic and aliphatic ketones as well as the synthesis of quaternary centers. Cyclic voltammetry is used to gain insight into the oxidation events of the reaction.

3.
Nano Lett ; 21(1): 854-860, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33395307

ABSTRACT

This paper describes reversible "on-off" switching of the photoluminescence (PL) intensity of CdSe quantum dots (QDs), mediated by photochromic furylfulgide carboxylate (FFC) molecules chemisorbed to the surfaces of the QDs. Repeated cycles of UV and visible illumination switch the FFC between "closed" and "open" isomers. Reversible switching of the QDs' PL intensity by >80% is enabled by different rates and yields of PL-quenching photoinduced electron transfer (PET) from the QDs to the respective isomers. This difference is consistent with cyclic voltammetry measurements and density functional calculations of the isomers' frontier orbital energies. This work demonstrates fatigue-resistant modulation of the PL of a QD-molecule complex through remote control of PET. Such control potentially enables applications, such as all-optical memory, sensing, and imaging, that benefit from a fast, tunable, and reversible response to light stimuli.

4.
Chem Sci ; 10(22): 5779-5786, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31293765

ABSTRACT

The development of stimuli-responsive amphiphilic supramolecular nanostructures is an attractive target for systems based on light-absorbing chromophores that can function as photosensitizers in water. We report here on a water soluble supramolecular carboxylated perylene monoimide system in which charge can be switched significantly by a change in pH. This was accomplished by substituting the perylene core with an ionizable hydroxyl group. In acidic environments, crystalline supramolecular nanoribbons with dimensions on the order of 500 × 50 × 2 nm form readily, while in basic solution the additional electrostatic repulsion of the ionized hydroxyl reduces assemblies to very small dimensions on the order of only several nanometers. The HOMO/LUMO levels were also found to be sensitive to pH; in acidic media the HOMO/LUMO levels are -5.65 and -3.70 eV respectively versus vacuum, whereas is in basic conditions they are -4.90 and -3.33 eV, respectively. Utilizing the assemblies as photosensitizers in photocatalytic production of hydrogen with [Mo3S13]2- as a catalyst at a pH of 4, H2 was generated with a turnover number of 125 after 18 hours. Charge switching the assemblies at a pH of 9-10 and using an iron porphyrin catalyst, protons could again be reduced to hydrogen and CO2 was reduced to CO with a turnover number of 30. The system investigated offers an example of dynamic photosensitizing assemblies that can drive reactions in both acidic and basic media.

SELECTION OF CITATIONS
SEARCH DETAIL
...