Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
BMJ Open ; 14(5): e082243, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719293

ABSTRACT

INTRODUCTION: The femoral head contralateral to the collapsed femoral head requiring total hip arthroplasty (THA) often manifests in the precollapse stage of osteonecrosis of the femoral head (ONFH). It is not yet demonstrated how autologous concentrated bone marrow injection may prevent collapse of the femoral head concurrent with contralateral THA. The primary objective is to evaluate the efficacy of autologous concentrated bone marrow injection for the contralateral, non-collapsed, femoral head in patients with bilateral ONFH, with the ipsilateral collapsed femoral head undergoing THA. METHODS AND ANALYSIS: This is a multicentre, prospective, non-randomised, historical-data controlled study. We will recruit patients with ONFH who are scheduled for THA and possess a non-collapsed contralateral femoral head. Autologous bone marrow will be collected using a point-of-care device. After concentration, the bone marrow will be injected into the non-collapsed femoral head following the completion of THA in the contralateral hip. The primary outcome is the percentage of femoral head collapse evaluated by an independent data monitoring committee using plain X-rays in two directions 2 years after autologous concentrated bone marrow injection. Postinjection safety, adverse events, pain and hip function will also be assessed. The patients will be evaluated preoperatively, and at 6 months, 1 year and 2 years postoperatively. ETHICS AND DISSEMINATION: This protocol has been approved by the Certified Committee for Regenerative Medicine of Tokyo Medical and Dental University and Japan's Ministry of Healthy, Labour and Welfare and will be performed as a class III regenerative medicine protocol, in accordance with Japan's Act on the Safety of Regenerative Medicine. The results of this study will be submitted to a peer-review journal for publication. The results of this study are expected to provide evidence to support the inclusion of autologous concentrated bone marrow injections in the non-collapsed femoral head in Japan's national insurance coverage. TRIAL REGISTRATION NUMBER: jRCTc032200229.


Subject(s)
Arthroplasty, Replacement, Hip , Bone Marrow Transplantation , Femur Head Necrosis , Transplantation, Autologous , Humans , Femur Head Necrosis/surgery , Femur Head Necrosis/therapy , Arthroplasty, Replacement, Hip/methods , Prospective Studies , Bone Marrow Transplantation/methods , Adult , Multicenter Studies as Topic , Female , Male , Middle Aged , Non-Randomized Controlled Trials as Topic , Femur Head
2.
Breed Sci ; 73(3): 332-342, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37840983

ABSTRACT

Many agronomic traits that are important in rice breeding are controlled by multiple genes. The extensive time and effort devoted so far to identifying and selecting such genes are still not enough to target multiple agronomic traits in practical breeding in Japan because of a lack of suitable plant materials in which to efficiently detect and validate beneficial alleles from diverse genetic resources. To facilitate the comprehensive analysis of genetic variation in agronomic traits among Asian cultivated rice, we developed 12 sets of chromosome segment substitution lines (CSSLs) with the japonica background, 11 of them in the same genetic background, using donors representing the genetic diversity of Asian cultivated rice. Using these materials, we overviewed the chromosomal locations of 1079 putative QTLs for seven agronomic traits and their allelic distribution in Asian cultivated rice through multiple linear regression analysis. The CSSLs will allow the effects of putative QTLs in the highly homogeneous japonica background to be validated.

3.
Int J Mol Sci ; 22(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498523

ABSTRACT

Climate resilience of crops is critical for global food security. Understanding the genetic basis of plant responses to ambient environmental changes is key to developing resilient crops. To detect genetic factors that set flowering time according to seasonal temperature conditions, we evaluated differences of flowering time over years by using chromosome segment substitution lines (CSSLs) derived from japonica rice cultivars "Koshihikari" × "Khao Nam Jen", each with different robustness of flowering time to environmental fluctuations. The difference of flowering times in 9 years' field tests was large in "Khao Nam Jen" (36.7 days) but small in "Koshihikari" (9.9 days). Part of this difference was explained by two QTLs. A CSSL with a "Khao Nam Jen" segment on chromosome 11 showed 28.0 days' difference; this QTL would encode a novel flowering-time gene. Another CSSL with a segment from "Khao Nam Jen" in the region around Hd16 on chromosome 3 showed 23.4 days" difference. A near-isogenic line (NIL) for Hd16 showed 21.6 days' difference, suggesting Hd16 as a candidate for this QTL. RNA-seq analysis showed differential expression of several flowering-time genes between early and late flowering seasons. Low-temperature treatment at panicle initiation stage significantly delayed flowering in the CSSL and NIL compared with "Koshihikari". Our results unravel the molecular control of flowering time under ambient temperature fluctuations.


Subject(s)
Acclimatization , Flowers/growth & development , Oryza/genetics , Quantitative Trait Loci , Flowers/genetics , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Rice (N Y) ; 14(1): 8, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33415511

ABSTRACT

BACKGROUND: In temperate rice cultivation regions, japonica rice cultivars are grown preferentially because consumers deem them to have good eating quality, whereas indica rice cultivars have high grain yields and strong heat tolerance but are considered to have poor eating quality. To mitigate the effects of global warming on rice production, it is important to develop novel rice cultivars with both desirable eating quality and resilience to high temperatures. Eating quality and agronomic traits were evaluated in a reciprocal set of chromosome segment substitution lines derived from crosses between a japonica rice cultivar 'Koshihikari' and an indica rice cultivar 'Takanari'. RESULTS: We detected 112 QTLs for amylose and protein contents, whiteness, stickiness, hardness and eating quality of cooked rice grains. Almost of 'Koshihikari' chromosome segments consistently improved eating quality. Among detected QTLs, six QTLs on chromosomes 1-5 and 11 were detected that increased whiteness and stickiness of cooked grains or decreased their hardness for 3 years. The QTLs on chromosomes 2-4 were not associated with differences in amylose or protein contents. QTLs on chromosomes 1-5 did not coincide with QTLs for agronomic traits such as heading date, culm length, panicle length, spikelet fertility and grain yield. Genetic effects of the detected QTLs were confirmed in substitution lines carrying chromosome segments from five other indica cultivars in the 'Koshihikari' genetic background. CONCLUSION: The detected QTLs were associated with differences in eating quality between indica and japonica rice cultivars. These QTLs appear to be widely distributed among indica cultivars and to be novel genetic factors for eating quality traits because their chromosome regions differed from those of the GBSSI (Wx) and SSIIa (Alk) genes. The detected QTLs would be very useful for improvement of eating quality of indica rice cultivars in breeding programs.

5.
Breed Sci ; 69(1): 68-83, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31086485

ABSTRACT

The fungal pathogen Pyricularia oryzae causes blast, a severe disease of rice (Oryza sativa L.). Improving blast resistance is important in rice breeding programs. Inoculation tests have been used to select for resistance genotypes, with DNA marker-based selection becoming an efficient alternative. No comprehensive DNA marker system for race-specific resistance alleles in the Japanese rice breeding program has been developed because some loci contain multiple resistance alleles. Here, we used the Fluidigm SNP genotyping platform to determine a set of 96 single nucleotide polymorphism (SNP) markers for 10 loci with race-specific resistance. The markers were then used to evaluate the presence or absence of 24 resistance alleles in 369 cultivars; results were 93.5% consistent with reported inoculation test-based genotypes in japonica varieties. The evaluation system was successfully applied to high-yield varieties with indica genetic backgrounds. The system includes polymorphisms that distinguish the resistant alleles at the tightly linked Pita and Pita-2 loci, thereby confirming that all the tested cultivars with Pita-2 allele carry Pita allele. We also developed and validated insertion/deletion (InDel) markers for ten resistance loci. Combining SNP and InDel markers is an accurate and efficient strategy for selection for race-specific resistance to blast in breeding programs.

6.
Breed Sci ; 68(2): 200-209, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29875603

ABSTRACT

Seed dormancy is important in rice breeding because it confers resistance to pre-harvest sprouting (PHS). To detect quantitative trait loci (QTLs) for pre-harvest sprouting resistance, we used chromosome segment substitution lines (CSSLs) derived from a cross between the Japanese upland rice cultivar 'Owarihatamochi' and the lowland rice cultivar 'Koshihikari'. In the CSSLs, several chromosomal regions were associated with PHS resistance. Among these, the chromosome 9 segment from 'Owarihatamochi' had the greatest association with increased PHS resistance. Further QTL analysis using an advanced backcross population (BC4F2) derived from a 'Koshihikari' × 'Owarihatamochi' cross revealed two putative QTLs, here designated qSDR9.1 (Seed dormancy 9.1) and qSDR9.2, on chromosome 9. The 'Owarihatamochi' alleles of the two QTLs reduced germination. Further fine mapping revealed that qSDR9.1 and qSDR9.2 were located within 4.1-Mb and 2.3-Mb intervals (based on the 'Nipponbare' reference genome sequence) defined by the simple sequence repeat marker loci RM24039 and RM24260 and Indel_2 and RM24540, respectively. We thus identified two QTLs for PHS resistance in 'Owarihatamochi', even though resistance levels are relatively low in this cultivar. This unexpected finding suggests the advantages of using CSSLs for QTL detection.

7.
Behav Brain Res ; 345: 59-64, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29357306

ABSTRACT

It is well known that regular low or mild exercise helps to improve and maintain cognition. On the other hand, ever thought many people prefer high-intensity exercise (e.g., running, swimming, biking, soccer, basketball, etc.) to get rid of stress or improve their health, the previous studies reported that intense exercise either impairs cognition or has no effect on cognitive function. However, we previously showed that intermittent intense exercise prevents stress-induced depressive behavior in mice in a similar manner to moderate exercise. On the basis of this finding, we investigated the effect of intermittent intense exercise on cognitive deficit in chronically stressed mice. A total of forty mice were evenly divided into control, stressed, stressed with moderate exercise, and stressed with intense exercise groups. The stressed mice were chronically exposed a restraint stress (10 h/day, 6 days/week for 7 weeks). The exercised mice were subjected to intermittent intense or endurance moderate running on the treadmill three times a week. Cognition was evaluated using the Morris water maze test and the object recognition test. Chronic stress decreased cognition, and newborn cell survival and blood vessel density in the hippocampus. However, both regular intense and moderate exercise prevented decrease of cognition, improved newborn cell survival and blood vessel density. These findings suggest that intermittent intense exercise may protect against decrease of cognition in a similar manner to moderate exercise and that both exercise-induced protection of decrease of cognition is closely related to newborn cell survival and angiogenesis in the hippocampus.


Subject(s)
Cognitive Dysfunction/prevention & control , Exercise Therapy/methods , Motor Activity , Animals , Cell Survival , Chronic Disease , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Disease Models, Animal , Hippocampus/blood supply , Hippocampus/pathology , Hippocampus/physiopathology , Male , Maze Learning/physiology , Mice, Inbred ICR , Motor Activity/physiology , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/psychology , Recognition, Psychology/physiology , Restraint, Physical , Stress, Psychological/pathology , Stress, Psychological/physiopathology , Stress, Psychological/therapy
8.
Breed Sci ; 65(4): 308-18, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26366113

ABSTRACT

Grain shape is an important trait for improving rice yield. A number of quantitative trait loci (QTLs) for this trait have been identified by using primary F2 mapping populations and recombinant inbred lines, in which QTLs with a small effect are harder to detect than they would be in advanced generations. In this study, we developed two advanced mapping populations (chromosome segment substitution lines [CSSLs] and BC4F2 lines consisting of more than 2000 individuals) in the genetic backgrounds of two improved cultivars: a japonica cultivar (Koshihikari) with short, round grains, and an indica cultivar (IR64) with long, slender grains. We compared the ability of these materials to reveal QTLs for grain shape with that of an F2 population. Only 8 QTLs for grain length or grain width were detected in the F2 population, versus 47 in the CSSL population and 65 in the BC4F2 population. These results strongly suggest that advanced mapping populations can reveal QTLs for agronomic traits under complicated genetic control, and that DNA markers linked with the QTLs are useful for choosing superior allelic combinations to enhance grain shape in the Koshihikari and IR64 genetic backgrounds.

9.
Genetics ; 201(2): 795-808, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26275424

ABSTRACT

We investigated the natural variations in the flag leaf morphology of rice. We conducted a principal component analysis based on nine flag leaf morphology traits using 103 accessions from the National Institute of Agrobiological Sciences Core Collection. The first component explained 39% of total variance, and the variable with highest loading was the width of the flag leaf (WFL). A genome-wide association analysis of 102 diverse Japanese accessions revealed that marker RM6992 on chromosome 4 was highly associated with WFL. In analyses of progenies derived from a cross between Takanari and Akenohoshi, the most significant quantitative trait locus (QTL) for WFL was in a 10.3-kb region containing the NARROW LEAF 1 (NAL1) gene, located 0.4 Mb downstream of RM6992. Analyses of chromosomal segment substitution lines indicated that a mutation (G1509A single-nucleotide mutation, causing an R233H amino acid substitution in NAL1) was present at the QTL. This explained 13 and 20% of total variability in WFL and the distance between small vascular bundles, respectively. The mutation apparently occurred during rice domestication and spread into japonica, tropical japonica, and indica subgroups. Notably, one accession, Phulba, had a NAL1 allele encoding only the N-terminal, or one-fourth, of the wild-type peptide. Given that the Phulba allele and the histidine-type allele showed essentially the same phenotype, the histidine-type allele was regarded as malfunctional. The phenotypes of transgenic plants varied depending on the ratio of histidine-type alleles to arginine-type alleles, raising the possibility that H(233)-type products function differently from and compete with R(233)-type products.


Subject(s)
Oryza/genetics , Plant Leaves/genetics , Plant Proteins/genetics , Quantitative Trait Loci/genetics , Alleles , Chromosome Mapping , Genome-Wide Association Study , Genotype , Mutation , Phenotype , Plants, Genetically Modified/genetics
10.
BMC Plant Biol ; 15: 115, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25953146

ABSTRACT

BACKGROUND: Heading date, a crucial factor determining regional and seasonal adaptation in rice (Oryza sativa L.), has been a major selection target in breeding programs. Although considerable progress has been made in our understanding of the molecular regulation of heading date in rice during last two decades, the previously isolated genes and identified quantitative trait loci (QTLs) cannot fully explain the natural variation for heading date in diverse rice accessions. RESULTS: To genetically dissect naturally occurring variation in rice heading date, we collected QTLs in advanced-backcross populations derived from multiple crosses of the japonica rice accession Koshihikari (as a common parental line) with 11 diverse rice accessions (5 indica, 3 aus, and 3 japonica) that originate from various regions of Asia. QTL analyses of over 14,000 backcrossed individuals revealed 255 QTLs distributed widely across the rice genome. Among the detected QTLs, 128 QTLs corresponded to genomic positions of heading date genes identified by previous studies, such as Hd1, Hd6, Hd3a, Ghd7, DTH8, and RFT1. The other 127 QTLs were detected in different chromosomal regions than heading date genes. CONCLUSIONS: Our results indicate that advanced-backcross progeny allowed us to detect and confirm QTLs with relatively small additive effects, and the natural variation in rice heading date could result from combinations of large- and small-effect QTLs. We also found differences in the genetic architecture of heading date (flowering time) among maize, Arabidopsis, and rice.


Subject(s)
Ecotype , Flowers/genetics , Flowers/physiology , Oryza/genetics , Oryza/physiology , Alleles , Chromosomes, Plant/genetics , Crosses, Genetic , Models, Genetic , Photoperiod , Physical Chromosome Mapping , Quantitative Trait Loci/genetics , Reproducibility of Results
11.
Sci Rep ; 4: 4199, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24569499

ABSTRACT

Inosine, a breakdown product of adenosine, has recently been shown to exert immunomodulatory and neuroprotective effects. We show here that the oral administration of inosine has antidepressant-like effects in two animal models. Inosine significantly enhanced neurite outgrowth and viability of primary cultured neocortical neurons, which was suppressed by adenosine A1 and A2A receptor agonists. Oral administration of inosine to mice transiently increased its concentration in the brain and enhanced neuronal proliferation in the dentate gyrus, accompanied by phosphorylation of mitogen-activated protein kinase and increase in transcript level of brain-derived neurotrophic factor. In stress models, oral inosine prevented an increase in immobility time in forced swim test after chronically unexpected stress and mitigated a reduction in sucrose preference after chronic social defeat stress. These results indicate that oral administration of inosine has the potential to prevent depressive disorder via adenosine receptors.


Subject(s)
Antidepressive Agents/administration & dosage , Brain/physiopathology , Depression/prevention & control , Depression/physiopathology , Inosine/administration & dosage , Receptors, Purinergic P1/metabolism , Administration, Oral , Animals , Brain/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Rats , Rats, Wistar , Treatment Outcome
12.
Behav Brain Res ; 200(1): 15-21, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19373977

ABSTRACT

The purpose of this study was to investigate the effect of antioxidant ingestion on stress-induced impairment of cognitive memory. Male C57BL/6 mice were divided into four groups as follows: (1) control mice (C mice) fed in a normal cage without immobilization; (2) restraint-stressed (RS mice) fed in a small cage; (3) vitamin E mice (VE mice), mice were fed in a small cage with a diet supplemented with vitamin E; (4) GliSODin mice (GS mice) fed in a small cage with a diet supplemented with GliSODin. RS, VE and GS mice were exposed to 12 h of immobilization daily. Five weeks later, spatial learning was measured using the Morris Water Maze (MWM) test. After water maze testing, we performed immunohistochemical analysis using 4-hydroxy-2-noneral (4-HNE) and an anti-Ki67 antibody. 4-HNE is a marker of lipid peroxidation. RS mice showed impaired spatial learning performance and an increased number of 4-HNE-positive cells in the granule cell layer (GCL) of the hippocampal dentate gyrus when compared to C mice. Moreover, RS mice showed a decreased number of Ki67-positive cells in the subgranular zone (SGZ). GS mice showed better spatial learning memory than RS mice. The number of 4-HNE-positive cells in the GCL of GS mice was significantly less than that of RS mice. The number of Ki67-positive cells in the SGZ of GS mice was significantly greater than that of RS mice. These finding suggests that GliSODin prevents stress-induced impairment of cognitive function and maintains neurogenesis in the hippocampus through antioxidant activity.


Subject(s)
Antioxidants/administration & dosage , Cucurbitaceae/chemistry , Hippocampus/metabolism , Memory Disorders/pathology , Memory Disorders/prevention & control , Superoxide Dismutase/administration & dosage , Administration, Oral , Aldehydes/metabolism , Animals , Hippocampus/pathology , Ki-67 Antigen/metabolism , Male , Maze Learning/drug effects , Maze Learning/physiology , Memory Disorders/etiology , Mice , Mice, Inbred C57BL , Neurogenesis/drug effects , Neurogenesis/physiology , Neurons/metabolism , Nutritional Support/methods , Reaction Time/drug effects , Reaction Time/physiology , Restraint, Physical/methods , Stress, Psychological/complications , Superoxide Dismutase/metabolism , Tocopherols/administration & dosage , Tocopherols/metabolism
13.
Neuropsychopharmacology ; 34(2): 501-8, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18563058

ABSTRACT

We have reported that hydrogen (H(2)) acts as an efficient antioxidant by gaseous rapid diffusion. When water saturated with hydrogen (hydrogen water) was placed into the stomach of a rat, hydrogen was detected at several microM level in blood. Because hydrogen gas is unsuitable for continuous consumption, we investigated using mice whether drinking hydrogen water ad libitum, instead of inhaling hydrogen gas, prevents cognitive impairment by reducing oxidative stress. Chronic physical restraint stress to mice enhanced levels of oxidative stress markers, malondialdehyde and 4-hydroxy-2-nonenal, in the brain, and impaired learning and memory, as judged by three different methods: passive avoidance learning, object recognition task, and the Morris water maze. Consumption of hydrogen water ad libitum throughout the whole period suppressed the increase in the oxidative stress markers and prevented cognitive impairment, as judged by all three methods, whereas hydrogen water did not improve cognitive ability when no stress was provided. Neural proliferation in the dentate gyrus of the hippocampus was suppressed by restraint stress, as observed by 5-bromo-2'-deoxyuridine incorporation and Ki-67 immunostaining, proliferation markers. The consumption of hydrogen water ameliorated the reduced proliferation although the mechanistic link between the hydrogen-dependent changes in neurogenesis and cognitive impairments remains unclear. Thus, continuous consumption of hydrogen water reduces oxidative stress in the brain, and prevents the stress-induced decline in learning and memory caused by chronic physical restraint. Hydrogen water may be applicable for preventive use in cognitive or other neuronal disorders.


Subject(s)
Hydrogen/administration & dosage , Learning/drug effects , Stress, Psychological/physiopathology , Aldehydes/metabolism , Animals , Avoidance Learning/drug effects , Brain/metabolism , Brain/physiopathology , Cognition/drug effects , Dentate Gyrus/drug effects , Dentate Gyrus/physiology , Drinking , Hydrogen/blood , Hydrogen/pharmacology , Malondialdehyde/metabolism , Maze Learning/drug effects , Mice , Mice, Inbred ICR , Movement/drug effects , Muscle Strength/drug effects , Neurogenesis/drug effects , Oxidative Stress/drug effects , Recognition, Psychology/drug effects , Restraint, Physical , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...