Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 410: 135318, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36608549

ABSTRACT

Administered carotenoid fatty acid esters are thought to be hydrolyzed to their free forms and absorbed into the body, and information on the tissue distribution of carotenoid fatty acid esters has been limited. Fucoxanthin, a marine carotenoid, exhibits various health benefits, including anti-diabetic and anti-obesity effects. However, fucoxanthin metabolism in mammals remains unclear. Herein, we investigated the fatty acid esters of fucoxanthin metabolites, fucoxanthinol and amarouciaxanthin A, in the tissues of male C57BL/6J mice fed a fucoxanthin-containing diet for one week. Fucoxanthinol and amarouciaxanthin A-3-esters accumulated abundantly in the liver and epididymal white adipose tissue, respectively. These esters were less detectable in the serum and other tissues. Therefore, it is suggested that fucoxanthinol and amarouciaxanthin A are partially acylated in the liver and epididymal white adipose tissue after being transported through the body as their free forms. This study presents a novel carotenoid metabolic pathway in mammals.


Subject(s)
Carotenoids , Mammals , Mice , Male , Animals , Tissue Distribution , Mice, Inbred C57BL
2.
Mar Drugs ; 20(7)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35877739

ABSTRACT

Fucoxanthin is a marine carotenoid found in brown seaweeds and several microalgae. It has been reported that fucoxanthin has health benefits such as anti-obesity and anti-diabetic effects. To facilitate fucoxanthin applications in the food industry, it is important to improve its low bioavailability. We attempted the combined feeding of fucoxanthin-containing seaweed oil (SO) and monocaprin in a powder diet and analyzed the fucoxanthin metabolite contents in the liver, small intestine and serum of diabetic/obese KK-Ay mice. After 4 weeks of feeding with the experimental diets, the serum fucoxanthinol concentrations of the mice fed 0.2% SO and 0.5% monocaprin were higher than those of the 0.2% SO-fed mice. Furthermore, fucoxanthinol accumulation in the liver and small intestine tended to increase in a combination diet of 0.2% SO and 0.125-0.5% monocaprin compared with a diet of 0.2% SO alone, although amarouciaxanthin A accumulation was not different among the 0.2% SO-fed groups. These results suggest that a combination of monocaprin with fucoxanthin-containing SO is an effective treatment for improving the bioavailability of fucoxanthin.


Subject(s)
Diabetes Mellitus , Seaweed , Animals , Biological Availability , Glycerides , Mice , Mice, Obese , Obesity/metabolism , Xanthophylls
3.
Nat Commun ; 9(1): 3227, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30104616

ABSTRACT

A microwave shares a nonintuitive phase called the geometric phase with an interacting electron spin after an elastic scattering. The geometric phase, generally discarded as a global phase, allows universal holonomic gating of an ideal logical qubit, which we call a geometric spin qubit, defined in the degenerate subspace of the triplet spin qutrit. We here experimentally demonstrate nonadiabatic and non-abelian holonomic quantum gates over the geometric spin qubit on an electron or nitrogen nucleus. We manipulate purely the geometric phase with a polarised microwave in a nitrogen-vacancy centre in diamond under a zero-magnetic field at room temperature. We also demonstrate a two-qubit holonomic gate to show universality by manipulating the electron-nucleus entanglement. The universal holonomic gates enable fast and fault-tolerant manipulation for realising quantum repeaters interfacing between universal quantum computers and secure communication networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...