Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 62(12): 1833-1837, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37167424

ABSTRACT

The hydroxyamidotransferase TsnB9 catalyzes hydroxylamine transfer from l-glutamic acid γ-monohydroxamate to the carboxyl group of trichostatic acid to produce the terminal hydroxamic acid group of trichostatin A, which is a potent inhibitor of histone deacetylase (HDAC). The reaction catalyzed by TsnB9 is similar to that catalyzed by glutamine-dependent asparagine synthetase, but the trichostatic acid recognition mechanism remains unclear. Here, we determine the crystal structure of TsnB9 composed of the N-terminal glutaminase domain and the C-terminal synthetase domain. Two consecutive phenylalanine residues, which are not found in glutamine-dependent asparagine synthetase, in the N-terminal glutaminase domain structurally form the bottom of the hydrophobic pocket in the C-terminal synthetase domain. Mutational and computational analyses of TsnB9 suggest five aromatic residues, including the two consecutive phenylalanine residues, in the hydrophobic pocket are important for the recognition of the dimethylaniline moiety of trichostatic acid. These insights lead us to the discovery of hydroxyamidotransferase to produce terminal hydroxamic acid group-containing HDAC inhibitors different from trichostatin A.


Subject(s)
Aspartate-Ammonia Ligase , Glutaminase , Glutamine , Hydroxamic Acids/chemistry , Proteins , Histone Deacetylase Inhibitors/pharmacology , Phenylalanine
2.
Angew Chem Int Ed Engl ; 61(20): e202117430, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35235232

ABSTRACT

Some enzymes annotated as squalene synthase catalyze the prenylation of carbazole-3,4-quinone-containing substrates in bacterial secondary metabolism. Their reaction mechanisms remain unclear because of their low sequence similarity to well-characterized aromatic substrate prenyltransferases (PTs). We determined the crystal structures of the carbazole PTs, and these revealed that the overall structure is well superposed on those of squalene synthases. In contrast, the stacking interaction between the prenyl donor and acceptor substrates resembles those observed in aromatic substrate PTs. Structural and mutational analyses suggest that the Ile and Asp residues are essential for the hydrophobic and hydrophilic interactions with the carbazole-3,4-quinone moiety of the prenyl acceptor, respectively, and a deprotonation mechanism of an intermediary σ-complex involving a catalytic triad is proposed. Our results provide a structural basis for a new subclass of aromatic substrate PTs.


Subject(s)
Biological Products , Dimethylallyltranstransferase , Carbazoles , Catalysis , Dimethylallyltranstransferase/metabolism , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Prenylation , Quinones , Substrate Specificity
3.
J Bacteriol ; 203(16): e0002521, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34096778

ABSTRACT

Serine kinase catalyzes the phosphorylation of free serine (Ser) to produce O-phosphoserine (Sep). An ADP-dependent Ser kinase in the hyperthermophilic archaeon Thermococcus kodakarensis (Tk-SerK) is involved in cysteine (Cys) biosynthesis and most likely Ser assimilation. An ATP-dependent Ser kinase in the mesophilic bacterium Staphylococcus aureus is involved in siderophore biosynthesis. Although proteins displaying various degrees of similarity with Tk-SerK are distributed in a wide range of organisms, it is unclear if they are actually Ser kinases. Here, we examined proteins from Desulfurococcales species in Crenarchaeota that display moderate similarity with Tk-SerK from Euryarchaeota (42 to 45% identical). Tk-serK homologs from Staphylothermus marinus (Smar_0555), Desulfurococcus amylolyticus (DKAM_0858), and Desulfurococcus mucosus (Desmu_0904) were expressed in Escherichia coli. All three partially purified recombinant proteins exhibited Ser kinase activity utilizing ATP rather than ADP as a phosphate donor. Purified Smar_0555 protein displayed activity for l-Ser but not other compounds, including d-Ser, l-threonine, and l-homoserine. The enzyme utilized ATP, UTP, GTP, CTP, and the inorganic polyphosphates triphosphate and tetraphosphate as phosphate donors. Kinetic analysis indicated that the Smar_0555 protein preferred nucleoside 5'-triphosphates over triphosphate as a phosphate donor. Transcript levels and Ser kinase activity in S. marinus cells grown with or without serine suggested that the Smar_0555 gene is constitutively expressed. The genes encoding Ser kinases examined here form an operon with genes most likely responsible for the conversion between Sep and 3-phosphoglycerate of central sugar metabolism, suggesting that the ATP-dependent Ser kinases from Desulfurococcales play a role in the assimilation of Ser. IMPORTANCE Homologs of the ADP-dependent Ser kinase from the archaeon Thermococcus kodakarensis (Tk-SerK) include representatives from all three domains of life. The results of this study show that even homologs from the archaeal order Desulfurococcales, which are the most structurally related to the ADP-dependent Ser kinases from the Thermococcales, are Ser kinases that utilize ATP, and in at least some cases inorganic polyphosphates, as the phosphate donor. The differences in properties between the Desulfurococcales and Thermococcales enzymes raise the possibility that Tk-SerK homologs constitute a group of kinases that phosphorylate free serine with a wide range of phosphate donors.


Subject(s)
Archaeal Proteins/metabolism , Desulfurococcaceae/enzymology , Protein Serine-Threonine Kinases/metabolism , Adenosine Triphosphate/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Desulfurococcaceae/classification , Desulfurococcaceae/genetics , Hot Temperature , Kinetics , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
4.
Nat Commun ; 9(1): 1765, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29720581

ABSTRACT

Almost all kinases utilize ATP as their phosphate donor, while a few kinases utilize pyrophosphate (PPi) instead. PPi-dependent kinases are often homologous to their ATP-dependent counterparts, but determinants of their different donor specificities remain unclear. We identify a PPi-dependent member of the ribokinase family, which differs from known PPi-dependent kinases, and elucidate its PPi-binding mode based on the crystal structures. Structural comparison and sequence alignment reveal five important residues: three basic residues specifically recognizing PPi and two large hydrophobic residues occluding a part of the ATP-binding pocket. Two of the three basic residues adapt a conserved motif of the ribokinase family for the PPi binding. Using these five key residues as a signature pattern, we discover additional PPi-specific members of the ribokinase family, and thus conclude that these residues are the determinants of PPi-specific binding. Introduction of these residues may enable transformation of ATP-dependent ribokinase family members into PPi-dependent enzymes.


Subject(s)
Diphosphates/metabolism , Mutation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Amino Acid Sequence , Amino Acids/chemistry , Amino Acids/genetics , Amino Acids/metabolism , Base Sequence , Binding Sites/genetics , Crystallography, X-Ray , Diphosphates/chemistry , Kinetics , Models, Molecular , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Protein Domains , Sequence Homology, Amino Acid
5.
ACS Chem Biol ; 12(6): 1514-1523, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28358477

ABSTRACT

A free serine kinase (SerK) is involved in l-cysteine biosynthesis in the hyperthermophilic archaeon Thermococcus kodakarensis. The enzyme converts ADP and l-serine (Ser) into AMP and O-phospho-l-serine (Sep), which is a precursor of l-cysteine. SerK is the first identified enzyme that phosphorylates free serine, while serine/threonine protein kinases have been well studied. SerK displays low sequence similarities to known kinases, suggesting that its reaction mechanism is different from those of known kinases. Here, we determined the crystal structures of SerK from T. kodakarensis (Tk-SerK). The overall structure is divided into two domains. A large cleft is found between the two domains in the AMP complex and in the ADP complex. The cleft is closed in the ternary product complex (Sep, AMP, and Tk-SerK) and may also be in the ternary substrate complex (Ser, ADP, and Tk-SerK). The closure may reorient the carboxyl group of E30 near to the Oγ atom of Ser. The Oγ atom is considered to be deprotonated by E30 and to attack the ß-phosphate of ADP to form Sep. The substantial decrease in the activity of the E30A mutant is consistent with this mechanism. Our structures also revealed the residues that contribute to the ligand binding. The conservation of these residues in uncharacterized proteins from bacteria may raise the possibility of the presence of free Ser kinases not only in archaea but also in bacteria.


Subject(s)
Cysteine/biosynthesis , Protein Serine-Threonine Kinases/metabolism , Thermococcus/metabolism , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Bacterial Proteins , Crystallography, X-Ray , Ligands , Molecular Structure , Phosphoserine/metabolism , Protein Domains , Protein Serine-Threonine Kinases/chemistry , Thermococcus/enzymology
6.
Biochemistry ; 54(22): 3494-503, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-25972008

ABSTRACT

The TK2285 protein from Thermococcus kodakarensis was recently characterized as an enzyme catalyzing the phosphorylation of myo-inositol. Only two myo-inositol kinases have been identified so far, the TK2285 protein and Lpa3 from Zea mays, both of which belong to the ribokinase family. In either case, which of the six hydroxyl groups of myo-inositol is phosphorylated is still unknown. In addition, little is known about the myo-inositol binding mechanism of these enzymes. In this work, we determined two crystal structures: those of the TK2285 protein complexed with the substrates (ATP analogue and myo-inositol) or the reaction products formed by the enzyme. Analysis of the ternary substrates-complex structure and site-directed mutagenesis showed that five residues were involved in the interaction with myo-inositol. Structural comparison with other ribokinase family enzymes indicated that two of the five residues, Q136 and R140, are characteristic of myo-inositol kinase. The crystal structure of the ternary products-complex, which was prepared by incubating the TK2285 protein with myo-inositol and ATP, holds 1d-myo-inositol 3-phosphate (Ins(3)P) in the active site. NMR and HPLC analyses with a chiral column also indicated that the TK2285 reaction product was Ins(3)P. The results obtained here showed that the TK2285 protein specifically catalyzes the phosphorylation of the 3-OH of myo-inositol. We thus designated TK2285 as myo-inositol 3-kinase (MI3K). The precise identification of the reaction product should provide a sound basis to further explore inositol metabolism in Archaea.


Subject(s)
Archaeal Proteins/chemistry , Inositol Phosphates/chemistry , Phosphotransferases/chemistry , Thermococcus/enzymology , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Catalysis , Catalytic Domain , Crystallography, X-Ray , Inositol Phosphates/genetics , Inositol Phosphates/metabolism , Phosphorylation/physiology , Phosphotransferases/genetics , Phosphotransferases/metabolism , Thermococcus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...