Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
1.
J Magn Reson Imaging ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963154

ABSTRACT

BACKGROUND: Lower back pain affects 75%-85% of people at some point in their lives. The detection of biochemical changes with sodium (23Na) MRI has potential to enable an earlier and more accurate diagnosis. PURPOSE: To measure 23Na relaxation times and apparent tissue sodium concentration (aTSC) in ex-vivo intervertebral discs (IVDs), and to investigate the relationship between aTSC and histological Thompson grade. STUDY TYPE: Ex-vivo. SPECIMEN: Thirty IVDs from the lumbar spines of 11 human body donors (4 female, 7 male, mean age 86 ± 8 years). FIELD STRENGTH/SEQUENCE: 3 T; density-adapted 3D radial sequence (DA-3D-RAD). ASSESSMENT: IVD 23Na longitudinal (T1), short and long transverse (T2s* and T2l*) relaxation times and the proportion of the short transverse relaxation (ps) were calculated for one IVD per spine sample (11 IVDs). Furthermore, aTSCs were calculated for all IVDs. The degradation of the IVDs was assessed via histological Thompson grading. STATISTICAL TESTS: A Kendall Tau correlation (τ) test was performed between the aTSCs and the Thompson grades. The significance level was set to P < 0.05. RESULTS: Mean 23Na relaxation parameters of a subset of 11 IVDs were T1 = 9.8 ± 1.3 msec, T2s* = 0.7 ± 0.1 msec, T2l* = 7.3 ± 1.1 msec, and ps = 32.7 ± 4.0%. A total of 30 IVDs were examined, of which 3 had Thompson grade 1, 4 had grade 2, 5 had grade 3, 5 had grade 4, and 13 had grade 5. The aTSC decreased with increasing degradation, being 274.6 ± 18.9 mM for Thompson grade 1 and 190.5 ± 29.5 mM for Thompson grade 5. The correlation between whole IVD aTSC and Thompson grade was significant and strongly negative (τ = -0.56). DATA CONCLUSION: This study showed a significant correlation between aTSC and degenerative IVD changes. Consequently, aTSC has potential to be useful as an indicator of degenerative spinal changes. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

2.
Magn Reson Med ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888143

ABSTRACT

PURPOSE: To investigate the impact of reduced k-space sampling on B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping and the resulting impact on phase shimming and dynamic/universal parallel transmit (pTx) RF pulse design. METHODS: Channel-wise 3D B 1 + $$ {\mathrm{B}}_1^{+} $$ maps were measured at 7 T in 35 and 23 healthy subjects for the heart and prostate region, respectively. With these B 1 + $$ {\mathrm{B}}_1^{+} $$ maps, universal phase shims optimizing homogeneity and B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiency were designed for heart and prostate imaging. In addition, universal 4kT-point pulses were designed for the heart. Subsequently, individual phase shims and individual 4kT-pulses were designed based on B 1 + $$ {\mathrm{B}}_1^{+} $$ maps with different acceleration factors and tested on the original maps. The performance of the pulses was compared by evaluating their coefficients of variation (CoV), B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiencies and specific energy doses (SED). Furthermore, validation measurements were carried out for one heart and one prostate subject. RESULTS: For both organs, the universal phase shims showed significantly higher B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiencies and lower CoVs compared to the vendor provided default shim, but could still be improved with individual phase shims based on accelerated B 1 + $$ {\mathrm{B}}_1^{+} $$ maps (acquisition time = 30 s). In the heart, the universal 4kT-pulse achieved significantly lower CoVs than tailored phase shims. Tailored 4kT-pulses based on accelerated B 1 + $$ {\mathrm{B}}_1^{+} $$ maps resulted in even further reduced CoVs or a 2.5-fold reduction in SED at the same CoVs as the universal 4kT-pulse. CONCLUSION: Accelerated B 1 + $$ {\mathrm{B}}_1^{+} $$ maps can be used for the design of tailored pTx pulses for prostate and cardiac imaging at 7 T, which further improve homogeneity, B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiency, or SED compared to universal pulses.

3.
Kidney Int Rep ; 9(5): 1310-1320, 2024 May.
Article in English | MEDLINE | ID: mdl-38707813

ABSTRACT

Introduction: Tissue Na+ overload is present in patients receiving hemodialysis (HD) and is associated with cardiovascular mortality. Strategies to actively modify tissue Na+ amount in these patients by adjusting the HD regimen have not been evaluated. Methods: In several substudies, including cross-sectional analyses (n = 75 patients on HD), a cohort study and a cross-over interventional study (n = 10 patients each), we assessed the impact of ultrafiltration (UF) volume, prolongation of dialysis treatment time, and modification of dialysate Na+ concentration on tissue Na+ content using 23Na magnetic resonance imaging (23Na-MRI). Results: In the cross-sectional analysis of our patients on HD, differences in dialysate sodium concentration ([Na+]) were associated with changes in tissue Na+ content, whereas neither UF volume nor HD treatment time affected tissue Na+ amount. Skin Na+ content was lower in 17 patients on HD, with dialysate [Na+] of <138 mmol/l compared to 58 patients dialyzing at ≥138 mmol/l (20.7 ± 7.3 vs. 26.0 ± 8.8 arbitrary units [a.u.], P < 0.05). In the cohort study, intraindividual prolongation of HD treatment time was not associated with a reduction in tissue Na+ content. Corresponding to the observational data, intraindividual modification of dialysate [Na+] from 138 to 142 to 135 mmol/l resulted in concordant changes in skin Na+ (24.3 ± 7.6 vs. 26.3 ± 8.0 vs. 20.8 ± 5.6 a.u, P < 0.05 each), whereas no significant change in muscle Na+ occurred. Conclusion: Solely adjustment of dialysate [Na+] had a reproducible impact on tissue Na+ content. 23Na-MRI could be utilized to monitor the effectiveness of dialysate [Na+] modifications in randomized-controlled outcome trials.

4.
Tomography ; 10(5): 773-788, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38787019

ABSTRACT

Background: The purpose of this study was to investigate the dependence of Intravoxel Incoherent Motion (IVIM) parameters measured in the human calf on B0. Methods: Diffusion-weighted image data of eight healthy volunteers were acquired using five b-values (0-600 s/mm2) at rest and after muscle activation at 0.55 and 7 T. The musculus gastrocnemius mediale (GM, activated) was assessed. The perfusion fraction f and diffusion coefficient D were determined using segmented fits. The dependence on field strength was assessed using Student's t-test for paired samples and the Wilcoxon signed-rank test. A biophysical model built on the three non-exchanging compartments of muscle, venous blood, and arterial blood was used to interpret the data using literature relaxation times. Results: The measured perfusion fraction of the GM was significantly lower at 7 T, both for the baseline measurement and after muscle activation. For 0.55 and 7 T, the mean f values were 7.59% and 3.63% at rest, and 14.03% and 6.92% after activation, respectively. The biophysical model estimations for the mean proton-density-weighted perfusion fraction were 3.37% and 6.50% for the non-activated and activated states, respectively. Conclusions: B0 may have a significant effect on the measured IVIM parameters. The blood relaxation times suggest that 7 T IVIM may be arterial-weighted whereas 0.55 T IVIM may exhibit an approximately equal weighting of arterial and venous blood.


Subject(s)
Diffusion Magnetic Resonance Imaging , Muscle, Skeletal , Humans , Diffusion Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Male , Adult , Female , Leg/diagnostic imaging , Leg/blood supply , Magnetic Fields , Motion , Healthy Volunteers , Young Adult
5.
Eur Radiol Exp ; 8(1): 61, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773044

ABSTRACT

BACKGROUND: Clinical magnetic resonance imaging (MRI) studies often use Cartesian gradient-echo (GRE) sequences with ~2-ms echo times (TEs) to monitor apparent total sodium concentration (aTSC). We compared Cartesian GRE and ultra-short echo time three-dimensional (3D) radial-readout sequences for measuring skeletal muscle aTSC. METHODS: We retrospectively evaluated 211 datasets from 112 volunteers aged 62.3 ± 12.1 years (mean ± standard deviation), acquired at 3 T from the lower leg. For 23Na MRI acquisitions, we used a two-dimensional Cartesian GRE sequence and a density-adapted 3D radial readout sequence with cuboid field-of-view (DA-3D-RAD-C). We calibrated the 23Na MR signal using reference tubes either with or without agarose and subsequently performed a relaxation correction. Additionally, we employed a six-echo 1H GRE sequence and a multi-echo spin-echo sequence to calculate proton density fat fraction (PDFF) and water T2. Paired Wilcoxon signed-rank test, Cohen dz for paired samples, and Spearman correlation were used. RESULTS: Relaxation correction effectively reduced the differences in muscle aTSC between the two acquisition and calibration methods (DA-3D-RAD-C using NaCl/agarose references: 20.05 versus 19.14 mM; dz = 0.395; Cartesian GRE using NaCl/agarose references: 19.50 versus 18.82 mM; dz = 0.427). Both aTSC of the DA-3D-RAD-C and Cartesian GRE acquisitions showed a small but significant correlation with PDFF as well as with water T2. CONCLUSIONS: Different 23Na MRI acquisition and calibration approaches affect aTSC values. Applying relaxation correction is advised to minimize the impact of sequence parameters on quantification, and considering additional fat correction is advisable for patients with increased fat fractions. RELEVANCE STATEMENT: This study highlights relaxation correction's role in improving sodium MRI accuracy, paving the way for better disease assessment and comparability of measured sodium signal in patients. KEY POINTS: • Differences in MRI acquisition methods hamper the comparability of sodium MRI measurements. • Measured sodium values depend on used MRI sequences and calibration method. • Relaxation correction during postprocessing mitigates these discrepancies. • Thus, relaxation correction enhances accuracy of sodium MRI, aiding its clinical use.


Subject(s)
Magnetic Resonance Imaging , Muscle, Skeletal , Humans , Middle Aged , Muscle, Skeletal/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Female , Retrospective Studies , Sodium , Sodium Isotopes , Aged , Adult , Imaging, Three-Dimensional/methods
6.
Skeletal Radiol ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607418

ABSTRACT

OBJECTIVE: To compare image quality and diagnostic performance of 3T and 7T magnetic resonance imaging (MRI) for direct depiction of finger flexor pulleys A2, A3 and A4 before and after artificial pulley rupture in an ex-vivo model using anatomic preparation as reference. MATERIALS AND METHODS: 30 fingers from 10 human cadavers were examined at 3T and 7T before and after being subjected to iatrogenic pulley rupture. MRI protocols were comparable in duration, both lasting less than 22 min. Two experienced radiologists evaluated the MRIs. Image quality was graded according to a 4-point Likert scale. Anatomic preparation was used as gold standard. RESULTS: In comparison, 7T versus 3T had a sensitivity and specificity for the detection of A2, A3 and A4 pulley lesions with 100% vs. 95%, respectively 98% vs. 100%. In the assessment of A3 pulley lesions sensitivity of 7T was superior to 3T MRI (100% vs. 83%), whereas specificity was lower (95% vs. 100%). Image quality assessed before and after iatrogenic rupture was comparable with 2.74 for 7T and 2.61 for 3T. Visualization of the A3 finger flexor pulley before rupture creation was significantly better for 7 T (p < 0.001). Interobserver variability showed substantial agreement at 3T (κ = 0.80) and almost perfect agreement at 7T (κ = 0.90). CONCLUSION: MRI at 3T allows a comparable diagnostic performance to 7T for direct visualization and characterization of finger flexor pulleys before and after rupture, with superiority of 7T MRI in the visualization of the normal A3 pulley.

7.
J Am Coll Cardiol ; 83(15): 1386-1398, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38599715

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter 2 inhibitors are believed to improve cardiac outcomes due to their osmotic diuretic potential. OBJECTIVES: The goal of this study was to test the hypothesis that vasopressin-driven urine concentration overrides the osmotic diuretic effect of glucosuria induced by dapagliflozin treatment. METHODS: DAPA-Shuttle1 (Hepato-renal Regulation of Water Conservation in Heart Failure Patients With SGLT-2 Inhibitor Treatment) was a single-center, double-blind, randomized, placebo-controlled trial, in which patients with chronic heart failure NYHA functional classes I/II and reduced ejection fraction were randomly assigned to receive dapagliflozin 10 mg daily or placebo (1:1) for 4 weeks. The primary endpoint was change from baseline in urine osmolyte concentration. Secondary endpoints included changes in copeptin levels and solute free water clearance. RESULTS: Thirty-three randomized, sodium-glucose cotransporter 2 inhibitor-naïve participants completed the study, 29 of whom (placebo: n = 14; dapagliflozin: n = 15) provided accurate 24-hour urine collections (mean age 59 ± 14 years; left ventricular ejection fraction 31% ± 9%). Dapagliflozin treatment led to an isolated increase in urine glucose excretion by 3.3 mmol/kg/d (95% CI: 2.51-4.04; P < 0.0001) within 48 hours (early) which persisted after 4 weeks (late; 2.7 mmol/kg/d [95% CI: 1.98-3.51]; P < 0.0001). Dapagliflozin treatment increased serum copeptin early (5.5 pmol/L [95% CI: 0.45-10.5]; P < 0.05) and late (7.8 pmol/L [95% CI: 2.77-12.81]; P < 0.01), leading to proportional reductions in free water clearance (early: -9.1 mL/kg/d [95% CI: -14 to -4.12; P < 0.001]; late: -11.0 mL/kg/d [95% CI: -15.94 to -6.07; P < 0.0001]) and elevated urine concentrations (late: 134 mmol/L [95% CI: 39.28-229.12]; P < 0.01). Therefore, urine volume did not significantly increase with dapagliflozin (mean difference early: 2.8 mL/kg/d [95% CI: -1.97 to 7.48; P = 0.25]; mean difference late: 0.9 mL/kg/d [95% CI: -3.83 to 5.62]; P = 0.70). CONCLUSIONS: Physiological-adaptive water conservation eliminated the expected osmotic diuretic potential of dapagliflozin and thereby prevented a glucose-driven increase in urine volume of approximately 10 mL/kg/d · 75 kg = 750 mL/kg/d. (Hepato-renal Regulation of Water Conservation in Heart Failure Patients With SGLT-2 Inhibitor Treatment [DAPA-Shuttle1]; NCT04080518).


Subject(s)
Benzhydryl Compounds , Conservation of Water Resources , Diuresis , Glucosides , Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Aged , Humans , Middle Aged , Diuretics, Osmotic/pharmacology , Diuretics, Osmotic/therapeutic use , Sodium-Glucose Transporter 2 , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Stroke Volume , Ventricular Function, Left , Water
8.
Radiologie (Heidelb) ; 2024 Apr 19.
Article in German | MEDLINE | ID: mdl-38639916

ABSTRACT

BACKGROUND: Magnetic resonance (MRI) imaging of the skeletal muscles (muscle MRI for short) is increasingly being used in clinical routine for diagnosis and longitudinal assessment of muscle disorders. However, cross-centre standards for measurement protocol and radiological assessment are still lacking. OBJECTIVES: The aim of this expert recommendation is to present standards for the application and interpretation of muscle MRI in hereditary and inflammatory muscle disorders. METHODS: This work was developed in collaboration between neurologists, neuroradiologists, radiologists, neuropaediatricians, neuroscientists and MR physicists from different university hospitals in Germany. The recommendations are based on expert knowledge and a focused literature search. RESULTS: The indications for muscle MRI are explained, including the detection and monitoring of structural tissue changes and oedema in the muscle, as well as the identification of a suitable biopsy site. Recommendations for the examination procedure and selection of appropriate MRI sequences are given. Finally, steps for a structured radiological assessment are presented. CONCLUSIONS: The present work provides concrete recommendations for the indication, implementation and interpretation of muscle MRI in muscle disorders. Furthermore, it provides a possible basis for the standardisation of the measurement protocols at all clinical centres in Germany.

9.
Magn Reson Med ; 92(2): 543-555, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38688865

ABSTRACT

PURPOSE: To determine whether intravoxel incoherent motion (IVIM) describes the blood perfusion in muscles better, assuming pseudo diffusion (Bihan Model 1) or ballistic motion (Bihan Model 2). METHODS: IVIM parameters were measured in 18 healthy subjects with three different diffusion gradient time profiles (bipolar with two diffusion times and one with velocity compensation) and 17 b-values (0-600 s/mm2) at rest and after muscle activation. The diffusion coefficient, perfusion fraction, and pseudo-diffusion coefficient were estimated with a segmented fit in the gastrocnemius medialis (GM) and tibialis anterior (TA) muscles. RESULTS: Velocity-compensated gradients resulted in a decreased perfusion fraction (6.9% ± 1.4% vs. 4.4% ± 1.3% in the GM after activation) and pseudo-diffusion coefficient (0.069 ± 0.046 mm2/s vs. 0.014 ± 0.006 in the GM after activation) compared to the bipolar gradients with the longer diffusion encoding time. Increased diffusion coefficients, perfusion fractions, and pseudo-diffusion coefficients were observed in the GM after activation for all gradient profiles. However, the increase was significantly smaller for the velocity-compensated gradients. A diffusion time dependence was found for the pseudo-diffusion coefficient in the activated muscle. CONCLUSION: Velocity-compensated diffusion gradients significantly suppress the IVIM effect in the calf muscle, indicating that the ballistic limit is mostly reached, which is supported by the time dependence of the pseudo-diffusion coefficient.


Subject(s)
Diffusion Magnetic Resonance Imaging , Muscle, Skeletal , Humans , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Adult , Male , Female , Motion , Leg/diagnostic imaging , Leg/blood supply , Young Adult , Image Processing, Computer-Assisted/methods , Algorithms
10.
Nervenarzt ; 2024 Apr 29.
Article in German | MEDLINE | ID: mdl-38683354

ABSTRACT

BACKGROUND: Magnetic resonance (MRI) imaging of the skeletal muscles (muscle MRI for short) is increasingly being used in clinical routine for diagnosis and longitudinal assessment of muscle disorders. However, cross-centre standards for measurement protocol and radiological assessment are still lacking. OBJECTIVES: The aim of this expert recommendation is to present standards for the application and interpretation of muscle MRI in hereditary and inflammatory muscle disorders. METHODS: This work was developed in collaboration between neurologists, neuroradiologists, radiologists, neuropaediatricians, neuroscientists and MR physicists from different university hospitals in Germany. The recommendations are based on expert knowledge and a focused literature search. RESULTS: The indications for muscle MRI are explained, including the detection and monitoring of structural tissue changes and oedema in the muscle, as well as the identification of a suitable biopsy site. Recommendations for the examination procedure and selection of appropriate MRI sequences are given. Finally, steps for a structured radiological assessment are presented. CONCLUSIONS: The present work provides concrete recommendations for the indication, implementation and interpretation of muscle MRI in muscle disorders. Furthermore, it provides a possible basis for the standardisation of the measurement protocols at all clinical centres in Germany.

12.
Eur Radiol ; 34(8): 5007-5015, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38345606

ABSTRACT

OBJECTIVES: The purpose of this study was to assess morphological and quantitative changes of the anterior cruciate ligament (ACL) and cartilage after ACL repair. METHODS: 7T MRI of the knee was acquired in 31 patients 1.5 years after ACL repair and in 13 controls. Proton density-weighted images with fat saturation (PD-fs) were acquired to assess ACL width, signal intensity, elongation, and fraying. T2/T2* mapping was performed for assessment of ACL and cartilage. Segmentation of the ACL, femoral, and tibial cartilage was carried out at 12 ROIs. The outcome evaluation consisted of the Lysholm Knee Score and International Knee Documentation Committee (IKDC) subjective score and clinical examination. RESULTS: ACL showed a normal signal intensity in 96.8% and an increased width in 76.5% after repair. Fraying occurred in 22.6% without having an impact on the clinical outcome (Lysholm score: 90.39 ± 9.75, p = 0.76 compared to controls). T2 analysis of the ACL revealed no difference between patients and controls (p = 0.74). Compared to controls, assessment of the femoral and tibial cartilage showed a significant increase of T2* times in all ROIs, except at the posterolateral femur. Patients presented a good outcome in clinical examination with a Lysholm score of 87.19 ± 14.89 and IKDC of 80.23 ± 16.84. CONCLUSION: T2 mapping results suggest that the tissue composition of the ACL after repair is similar to that of a native ACL after surgery, whereas the ACL exhibits an increased width. Fraying of the ACL can occur without having any impact on functional outcomes. T2* analysis revealed early degradation at the cartilage. CLINICAL RELEVANCE STATEMENT: MRI represents a noninvasive diagnostic tool for the morphological and compositional assessment of the anterior cruciate ligament after repair, whereas knowledge about post-surgical alterations is crucial for adequate imaging interpretation. KEY POINTS: • There has been renewed interest in repairing the anterior cruciate ligament with a proximally torn ligament. • T2 times of the anterior cruciate ligament do not differ between anterior cruciate ligament repair patients and controls. • T2 mapping may serve as a surrogate for the evaluation of the anterior cruciate ligament after repair.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Female , Male , Adult , Anterior Cruciate Ligament Reconstruction/methods , Treatment Outcome , Anterior Cruciate Ligament Injuries/diagnostic imaging , Anterior Cruciate Ligament Injuries/surgery , Middle Aged , Anterior Cruciate Ligament/diagnostic imaging , Anterior Cruciate Ligament/surgery , Young Adult , Case-Control Studies , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Adolescent
13.
BMC Geriatr ; 24(1): 141, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38326734

ABSTRACT

BACKGROUND: Osteosarcopenia is a common geriatric syndrome with an increasing prevalence with age, leading to secondary diseases and complex consequences such as falls and fractures, as well as higher mortality and frailty rates. There is a great need for prevention and treatment strategies. METHODS: In this analysis, we used magnetic resonance imaging (MRI) data from the randomised controlled FrOST trial, which enrolled community-dwelling osteosarcopenic men aged > 72 years randomly allocated to 16 months of twice-weekly high-intensity resistance training (HIRT) or a non-training control group. MR Dixon imaging was used to quantify the effects of HIRT on muscle fat infiltration in the paraspinal muscles, determined as changes in muscle tissue, fat faction and intermuscular adipose tissue (IMAT) in the erector spinae and psoas major muscles. Intention-to-treat analysis with multiple imputation was used to analyse the data set. RESULTS: After 16 months of intervention, 15 men from the HIRT and 16 men from the CG were included in the MRI analysis. In summary, no positive effects on the fat infiltration of the erector spinae and psoas major muscles were observed. CONCLUSIONS: The previously reported positive effects on lumbar spine bone mineral density (BMD) suggest that mechanotransduction induces tropic effects on bone, but that fat infiltration of the erector spinae and psoas major muscles are either irreversible or, for some unknown reason, resistant to exercise. Because of the beneficial effects on spinal BMD, HIRT is still recommended in osteosarcopenic older men, but further research is needed to confirm appropriate age-specific training exercises for the paraspinal muscles. The potential of different MRI sequences to quantify degenerative and metabolic changes in various muscle groups must be better characterized. TRIAL REGISTRATIONS: FrOST was approved by the University Ethics Committee of the Friedrich-Alexander University of Erlangen-Nürnberg (number 67_15b and 4464b) and the Federal Office for Radiation Projection (BfS, number Z 5-2,246,212 - 2017-002). Furthermore, it fully complies with the Declaration of Helsinki and is registered at ClinicalTrials.gov: NCT03453463 (05/03/2018). JAMA 310:2191-2194, 2013.


Subject(s)
Mechanotransduction, Cellular , Paraspinal Muscles , Aged , Male , Humans , Paraspinal Muscles/diagnostic imaging , Paraspinal Muscles/physiology , Bone Density , Adipose Tissue/diagnostic imaging , Research Design , Magnetic Resonance Imaging/methods
14.
MAGMA ; 37(2): 257-272, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366129

ABSTRACT

OBJECTIVE: To compensate subject-specific field inhomogeneities and enhance fat pre-saturation with a fast online individual spectral-spatial (SPSP) single-channel pulse design. METHODS: The RF shape is calculated online using subject-specific field maps and a predefined excitation k-space trajectory. Calculation acceleration options are explored to increase clinical viability. Four optimization configurations are compared to a standard Gaussian spectral selective pre-saturation pulse and to a Dixon acquisition using phantom and volunteer (N = 5) data at 1.5 T with a turbo spin echo (TSE) sequence. Measurements and simulations are conducted across various body parts and image orientations. RESULTS: Phantom measurements demonstrate up to a 3.5-fold reduction in residual fat signal compared to Gaussian fat saturation. In vivo evaluations show improvements up to sixfold for dorsal subcutaneous fat in sagittal cervical spine acquisitions. The versatility of the tailored trajectory is confirmed through sagittal foot/ankle, coronal, and transversal cervical spine experiments. Additional measurements indicate that excitation field (B1) information can be disregarded at 1.5 T. Acceleration methods reduce computation time to a few seconds. DISCUSSION: An individual pulse design that primarily compensates for main field (B0) inhomogeneities in fat pre-saturation is successfully implemented within an online "push-button" workflow. Both fat saturation homogeneity and the level of suppression are improved.


Subject(s)
Image Enhancement , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Phantoms, Imaging , Heart Rate , Cervical Vertebrae/diagnostic imaging
15.
Skeletal Radiol ; 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381197

ABSTRACT

This narrative review explores recent advancements and applications of modern low-field (≤ 1 Tesla) magnetic resonance imaging (MRI) in musculoskeletal radiology. Historically, high-field MRI systems (1.5 T and 3 T) have been the standard in clinical practice due to superior image resolution and signal-to-noise ratio. However, recent technological advancements in low-field MRI offer promising avenues for musculoskeletal imaging. General principles of low-field MRI systems are being introduced, highlighting their strengths and limitations compared to high-field counterparts. Emphasis is placed on advancements in hardware design, including novel magnet configurations, gradient systems, and radiofrequency coils, which have improved image quality and reduced susceptibility artifacts particularly in musculoskeletal imaging. Different clinical applications of modern low-field MRI in musculoskeletal radiology are being discussed. The diagnostic performance of low-field MRI in diagnosing various musculoskeletal pathologies, such as ligament and tendon injuries, osteoarthritis, and cartilage lesions, is being presented. Moreover, the discussion encompasses the cost-effectiveness and accessibility of low-field MRI systems, making them viable options for imaging centers with limited resources or specific patient populations. From a scientific standpoint, the amount of available data regarding musculoskeletal imaging at low-field strengths is limited and often several decades old. This review will give an insight to the existing literature and summarize our own experiences with a modern low-field MRI system over the last 3 years. In conclusion, the narrative review highlights the potential clinical utility, challenges, and future directions of modern low-field MRI, offering valuable insights for radiologists and healthcare professionals seeking to leverage these advancements in their practice.

16.
Magn Reson Med ; 91(5): 1994-2009, 2024 May.
Article in English | MEDLINE | ID: mdl-38174601

ABSTRACT

PURPOSE: Traditional phase-contrast MRI is affected by displacement artifacts caused by non-synchronized spatial- and velocity-encoding time points. The resulting inaccurate velocity maps can affect the accuracy of derived hemodynamic parameters. This study proposes and characterizes a 3D radial phase-contrast UTE (PC-UTE) sequence to reduce displacement artifacts. Furthermore, it investigates the displacement of a standard Cartesian flow sequence by utilizing a displacement-free synchronized-single-point-imaging MR sequence (SYNC-SPI) that requires clinically prohibitively long acquisition times. METHODS: 3D flow data was acquired at 3T at three different constant flow rates and varying spatial resolutions in a stenotic aorta phantom using the proposed PC-UTE, a Cartesian flow sequence, and a SYNC-SPI sequence as reference. Expected displacement artifacts were calculated from gradient timing waveforms and compared to displacement values measured in the in vitro flow experiments. RESULTS: The PC-UTE sequence reduces displacement and intravoxel dephasing, leading to decreased geometric distortions and signal cancellations in magnitude images, and more spatially accurate velocity quantification compared to the Cartesian flow acquisitions; errors increase with velocity and higher spatial resolution. CONCLUSION: PC-UTE MRI can measure velocity vector fields with greater accuracy than Cartesian acquisitions (although pulsatile fields were not studied) and shorter scan times than SYNC-SPI. As such, this approach is superior to traditional Cartesian 3D and 4D flow MRI when spatial misrepresentations cannot be tolerated, for example, when computational fluid dynamics simulations are compared to or combined with in vitro or in vivo measurements, or regional parameters such as wall shear stress are of interest.


Subject(s)
Aortic Valve Stenosis , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Hemodynamics , Phantoms, Imaging , Artifacts , Blood Flow Velocity , Imaging, Three-Dimensional/methods
17.
Magn Reson Med ; 91(6): 2498-2507, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38247050

ABSTRACT

PURPOSE: To mitigate B 1 + $$ {B}_1^{+} $$ inhomogeneity at 7T for multi-channel transmit arrays using unsupervised deep learning with convolutional neural networks (CNNs). METHODS: Deep learning parallel transmit (pTx) pulse design has received attention, but such methods have relied on supervised training and did not use CNNs for multi-channel B 1 + $$ {B}_1^{+} $$ maps. In this work, we introduce an alternative approach that facilitates the use of CNNs with multi-channel B 1 + $$ {B}_1^{+} $$ maps while performing unsupervised training. The multi-channel B 1 + $$ {B}_1^{+} $$ maps are concatenated along the spatial dimension to enable shift-equivariant processing amenable to CNNs. Training is performed in an unsupervised manner using a physics-driven loss function that minimizes the discrepancy of the Bloch simulation with the target magnetization, which eliminates the calculation of reference transmit RF weights. The training database comprises 3824 2D sagittal, multi-channel B 1 + $$ {B}_1^{+} $$ maps of the healthy human brain from 143 subjects. B 1 + $$ {B}_1^{+} $$ data were acquired at 7T using an 8Tx/32Rx head coil. The proposed method is compared to the unregularized magnitude least-squares (MLS) solution for the target magnetization in static pTx design. RESULTS: The proposed method outperformed the unregularized MLS solution for RMS error and coefficient-of-variation and had comparable energy consumption. Additionally, the proposed method did not show local phase singularities leading to distinct holes in the resulting magnetization unlike the unregularized MLS solution. CONCLUSION: Proposed unsupervised deep learning with CNNs performs better than unregularized MLS in static pTx for speed and robustness.


Subject(s)
Deep Learning , Magnetic Resonance Imaging , Humans , Retrospective Studies , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Brain/diagnostic imaging
18.
Invest Radiol ; 59(3): 215-222, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37490031

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the accuracy of modern low-field magnetic resonance imaging (MRI) for lung nodule detection and to correlate nodule size measurement with computed tomography (CT) as reference. MATERIALS AND METHODS: Between November 2020 and July 2021, a prospective clinical trial using low-field MRI at 0.55 T was performed in patients with known pulmonary nodules from a single academic medical center. Every patient underwent MRI and CT imaging on the same day. The primary aim was to evaluate the detection accuracy of pulmonary nodules using MRI with transversal periodically rotated overlapping parallel lines with enhanced reconstruction in combination with coronal half-Fourier acquired single-shot turbo spin-echo MRI sequences. The secondary outcome was the correlation of the mean lung nodule diameter with CT as reference according to the Lung Imaging Reporting and Data System. Nonparametric Mann-Whitney U test, Spearman rank correlation coefficient, and Bland-Altman analysis were applied to analyze the results. RESULTS: A total of 46 participants (mean age ± SD, 66 ± 11 years; 26 women) were included. In a blinded analysis of 964 lung nodules, the detection accuracy was 100% for those ≥6 mm (126/126), 80% (159/200) for those ≥4-<6 mm, and 23% (147/638) for those <4 mm in MRI compared with reference CT. Spearman correlation coefficient of MRI and CT size measurement was r = 0.87 ( P < 0.001), and the mean difference was 0.16 ± 0.9 mm. CONCLUSIONS: Modern low-field MRI shows excellent accuracy in lesion detection for lung nodules ≥6 mm and a very strong correlation with CT imaging for size measurement, but could not compete with CT in the detection of small nodules.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Female , Prospective Studies , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Lung/pathology , Multiple Pulmonary Nodules/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods
19.
Magn Reson Med ; 91(3): 1099-1114, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37997011

ABSTRACT

PURPOSE: To evaluate the influence of skeletal maturation on sodium (23 Na) MRI relaxation parameters and the accuracy of tissue sodium concentration (TSC) quantification in human knee cartilage. METHODS: Twelve pediatric knee specimens were imaged with whole-body 10.5 T MRI using a density-adapted 3D radial projection sequence to evaluate 23 Na parameters: B1 + , T1 , biexponential T 2 * $$ {\mathrm{T}}_2^{\ast } $$ , and TSC. Water, collagen, and sulfated glycosaminoglycan (sGAG) content were calculated from osteochondral biopsies. The TSC was corrected for B1 + , relaxation, and water content. The literature-based TSC (TSCLB ) used previously published values for corrections, whereas the specimen-specific TSC (TSCSP ) used measurements from individual specimens. 23 Na parameters were evaluated in eight cartilage compartments segmented on proton images. Associations between 23 Na parameters, TSCLB - TSCSP difference, biochemical content, and age were determined. RESULTS: From birth to 12 years, cartilage water content decreased by 18%; collagen increased by 59%; and sGAG decreased by 36% (all R2 ≥ 0.557). The short T 2 * $$ {\mathrm{T}}_2^{\ast } $$ ( T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ ) decreased by 72%, and the signal fraction relaxing with T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ ( fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ ) increased by 55% during the first 5 years but remained relatively stable after that. TSCSP was significantly correlated with sGAG content from biopsies (R2 = 0.739). Depending on age, TSCLB showed higher or lower values than TSCSP . The TSCLB - TSCSP difference was significantly correlated with T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.850), fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.651), and water content (R2 = 0.738). CONCLUSION: TSC and relaxation parameters measured with 23 Na MRI provide noninvasive information about changes in sGAG content and collagen matrix during cartilage maturation. Cartilage TSC quantification assuming fixed relaxation may be feasible in children older than 5 years.


Subject(s)
Cartilage, Articular , Cartilage , Humans , Child , Child, Preschool , Magnetic Resonance Imaging/methods , Sodium , Collagen , Water , Cartilage, Articular/diagnostic imaging
20.
MAGMA ; 37(1): 27-38, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37737942

ABSTRACT

OBJECTIVE: First implementation of dynamic oxygen-17 (17O) MRI at 7 Tesla (T) during neuronal stimulation in the human brain. METHODS: Five healthy volunteers underwent a three-phase 17O gas (17O2) inhalation experiment. Combined right-side visual stimulus and right-hand finger tapping were used to achieve neuronal stimulation in the left cerebral hemisphere. Data analysis included the evaluation of the relative partial volume (PV)-corrected time evolution of absolute 17O water (H217O) concentration and of the relative signal evolution without PV correction. Statistical analysis was performed using a one-tailed paired t test. Blood oxygen level-dependent (BOLD) experiments were performed to validate the stimulation paradigm. RESULTS: The BOLD maps showed significant activity in the stimulated left visual and sensorimotor cortex compared to the non-stimulated right side. PV correction of 17O MR data resulted in high signal fluctuations with a noise level of 10% due to small regions of interest (ROI), impeding further quantitative analysis. Statistical evaluation of the relative H217O signal with PV correction (p = 0.168) and without (p = 0.382) did not show significant difference between the stimulated left and non-stimulated right sensorimotor ROI. DISCUSSION: The change of cerebral oxygen metabolism induced by sensorimotor and visual stimulation is not large enough to be reliably detected with the current setup and methodology of dynamic 17O MRI at 7 T.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Brain/physiology , Oxygen Isotopes , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL
...