Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mult Scler Relat Disord ; 49: 102752, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33486402

ABSTRACT

BACKGROUND: In multiple sclerosis (MS), magnetic resonance imaging (MRI) frequently shows ill-defined areas with intermediate signal intensity between the normal appearing white matter (NAWM) and focal T2-hyperintense lesions, termed "diffusely appearing white matter" (DAWM). Even though several advanced MRI techniques have shown the potential to detect and quantify subtle commonly not visible microscopic tissue changes, to date only a few advanced MRI studies investigated DAWM changes in a quantitative manner. The aim of this study was to detect and quantify tissue abnormalities in the DAWM in comparison to focal lesions and the NAWM in MS patients by sodium (23Na) MRI. METHODS: 23Na and conventional MRI were performed in 25 MS patients with DAWM (DAWM+) and in 25 sex- and age matched MS patients without DAWM (DAWM-), as well as in ten healthy controls (HC). Mean total sodium concentrations (TSC) were quantified in the DAWM, NAWM, normal appearing grey matter (NAGM) and in focal MS lesions. RESULTS: In MS DAWM+and DAWM-, TSC values were increased in the NAGM (DAWM+: 44.61 ± 4.09 mM; DAWM-: 45.37 ± 3.8 mM) and in the NAWM (DAWM+: 39.85 ± 3.89 mM; DAWM-: 39.82 ± 4.25 mM) compared to normal grey and white matter in HC (GM 40.87 ± 3.25 mM, WM 35.9 ± 1.81 mM; p < 0.05 for all comparisons). Interestingly, the DAWM showed similar sodium concentrations (39.32 ± 4.59 mM) to the NAWM (39.85 ± 3.89 mM), whereas TSC values in T1 hypointense (46.53 ± 7.87 mM) and T1 isointense (41.99 ± 6.10 mM) lesions were significantly higher than in the DAWM (p < 0.001 and 0.017 respectively). CONCLUSION: 23Na MRI is confirmed as a sensitive marker of even subtle tissue abnormalities. DAWM sodium levels are increased and comparable to the abnormalities in NAWM, suggesting pathological changes less severe than in focal lesions comparable to what is expected in the NAWM.


Subject(s)
Multiple Sclerosis , White Matter , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Sodium , White Matter/diagnostic imaging
2.
Optom Vis Sci ; 92(11): 1037-46, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26501733

ABSTRACT

PURPOSE: The aim of this pilot study was to assess the driving performance and the visual search behavior, that is, eye and head movements, of patients with glaucoma in comparison to healthy-sighted subjects during a simulated driving test. METHODS: Driving performance and gaze behavior of six glaucoma patients and eight healthy-sighted age- and sex-matched control subjects were compared in an advanced driving simulator. All subjects underwent a 40-minute driving test including nine hazardous situations on city and rural roads. Fitness to drive was assessed by a masked driving instructor according to the requirements of the official German driving test. Several driving performance measures were investigated: lane position, time to line crossing, and speed. Additionally, eye and head movements were tracked and analyzed. RESULTS: Three out of six glaucoma patients passed the driving test and their driving performance was indistinguishable from that of the control group. Patients who passed the test showed an increased visual exploration in comparison to patients who failed; that is, they showed increased number of head and gaze movements toward eccentric regions. Furthermore, patients who failed the test showed a rightward bias in average lane position, probably in an attempt to maximize the safety margin to oncoming traffic. CONCLUSIONS: Our study suggests that a considerable subgroup of subjects with binocular glaucomatous visual field loss shows a safe driving behavior in a virtual reality environment, because they adapt their viewing behavior by increasing their visual scanning. Hence, binocular visual field loss does not necessarily influence driving safety. We recommend that more individualized driving assessments, which will take into account the patient's ability to compensate, are required.


Subject(s)
Automobile Driving , Fixation, Ocular/physiology , Glaucoma/physiopathology , Task Performance and Analysis , Vision Disorders/physiopathology , Vision, Binocular/physiology , Visual Fields/physiology , Aged , Automobile Driver Examination , Computer Simulation , Eye Movements/physiology , Female , Head Movements/physiology , Humans , Male , Middle Aged , Pilot Projects , Safety , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...