Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37242864

ABSTRACT

Polymers have a reputation for several advantageous characteristics like chemical resistance, weight reduction, and simple form-giving processes. The rise of additive manufacturing technologies such as Fused Filament Fabrication (FFF) has introduced an even more versatile production process that supported new product design and material concepts. This led to new investigations and innovations driven by the individualization of customized products. The other side of the coin contains an increasing resource and energy consumption satisfying the growing demand for polymer products. This turns into a magnitude of waste accumulation and increased resource consumption. Therefore, appropriate product and material design, taking into account end-of-life scenarios, is essential to limit or even close the loop of economically driven product systems. In this paper, a comparison of virgin and recycled biodegradable (polylactic acid (PLA)) and petroleum-based (polypropylene (PP) & support) filaments for extrusion-based Additive Manufacturing is presented. For the first time, the thermo-mechanical recycling setup contained a service-life simulation, shredding, and extrusion. Specimens and complex geometries with support materials were manufactured with both, virgin and recycled materials. An empirical assessment was executed through mechanical (ISO 527), rheological (ISO 1133), morphological, and dimensional testing. Furthermore, the surface properties of the PLA and PP printed parts were analyzed. In summary, PP parts and parts from its support structure showed, in consideration of all parameters, suitable recyclability with a marginal parameter variance in comparison to the virgin material. The PLA components showed an acceptable decline in the mechanical values but through thermo-mechanical degradation processes, rheological and dimensional properties of the filament dropped decently. This results in significantly identifiable artifacts of the product optics, based on an increase in surface roughness.

2.
Bioengineering (Basel) ; 10(4)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37106684

ABSTRACT

The use of poles in sports, to support propulsion, is an integral and inherent component of some sports disciplines such as skiing (cross-country and roller), Nordic walking, and trail running. The aim of this review is to summarize the current state-of-the-art of literature on multiple influencing factors of poles in terms of biomechanical and physiological effects. We evaluated publications in the subfields of biomechanics, physiology, coordination, and pole properties. Plantar pressure and ground reaction forces decreased with the use of poles in all included studies. The upper body and trunk muscles were more active. The lower body muscles were either less active or no different from walking without poles. The use of poles led to a higher oxygen consumption (VO2) without increasing the level of perceived exertion (RPE). Furthermore, the heart rate (HR) tended to be higher. Longer poles reduced the VO2 and provided a longer thrust phase and greater propulsive impulse. The mass of the poles showed no major influence on VO2, RPE, or HR. Solely the activity of the biceps brachii increased with the pole mass.

SELECTION OF CITATIONS
SEARCH DETAIL
...