Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
iScience ; 24(10): 103099, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34622154

ABSTRACT

Pancreatic islets are essential for maintaining physiological blood glucose levels, and declining islet function is a hallmark of type 2 diabetes. We employ mass spectrometry-based proteomics to systematically analyze islets from 9 genetic or diet-induced mouse models representing a broad cross-section of metabolic health. Quantifying the islet proteome to a depth of >11,500 proteins, this study represents the most detailed analysis of mouse islet proteins to date. Our data highlight that the majority of islet proteins are expressed in all strains and diets, but more than half of the proteins vary in expression levels, principally due to genetics. Associating these varied protein expression levels on an individual animal basis with individual phenotypic measures reveals islet mitochondrial function as a major positive indicator of metabolic health regardless of strain. This compendium of strain-specific and dietary changes to mouse islet proteomes represents a comprehensive resource for basic and translational islet cell biology.

3.
FEBS Lett ; 591(2): 322-330, 2017 01.
Article in English | MEDLINE | ID: mdl-28032905

ABSTRACT

The hormone insulin coordinates the catabolism of nutrients by protein phosphorylation. Phosphoproteomic analysis identified insulin-responsive phosphorylation of the Glu/Asp transporter SLC1A3/EAAT1 in adipocytes. The role of SLC1A3 in adipocytes is not well-understood. We show that SLC1A3 is localised to the plasma membrane and the major regulator of acidic amino acid uptake in adipocytes. However, its localisation and activity were unaffected by insulin or mutation of the insulin-regulated phosphosite. The latter was also observed using a heterologous expression system in Xenopus laevis oocytes. Thus, SLC1A3 maintains a constant import of acidic amino acids independently of nutritional status in adipocytes.


Subject(s)
Adipocytes/metabolism , Cell Membrane/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Insulin/pharmacology , 3T3-L1 Cells , Adipocytes/drug effects , Amino Acid Sequence , Animals , Excitatory Amino Acid Transporter 1/chemistry , HEK293 Cells , Humans , Mice , Oocytes/drug effects , Oocytes/metabolism , Phosphorylation/drug effects , Xenopus laevis
4.
J Biol Chem ; 290(39): 23528-42, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26240143

ABSTRACT

Insulin signaling augments glucose transport by regulating glucose transporter 4 (GLUT4) trafficking from specialized intracellular compartments, termed GLUT4 storage vesicles (GSVs), to the plasma membrane. Proteomic analysis of GSVs by mass spectrometry revealed enrichment of 59 proteins in these vesicles. We measured reduced abundance of 23 of these proteins following insulin stimulation and assigned these as high confidence GSV proteins. These included established GSV proteins such as GLUT4 and insulin-responsive aminopeptidase, as well as six proteins not previously reported to be localized to GSVs. Tumor suppressor candidate 5 (TUSC5) was shown to be a novel GSV protein that underwent a 3.7-fold increase in abundance at the plasma membrane in response to insulin. siRNA-mediated knockdown of TUSC5 decreased insulin-stimulated glucose uptake, although overexpression of TUSC5 had the opposite effect, implicating TUSC5 as a positive regulator of insulin-stimulated glucose transport in adipocytes. Incubation of adipocytes with TNFα caused insulin resistance and a concomitant reduction in TUSC5. Consistent with previous studies, peroxisome proliferator-activated receptor (PPAR) γ agonism reversed TNFα-induced insulin resistance. TUSC5 expression was necessary but insufficient for PPARγ-mediated reversal of insulin resistance. These findings functionally link TUSC5 to GLUT4 trafficking, insulin action, insulin resistance, and PPARγ action in the adipocyte. Further studies are required to establish the exact role of TUSC5 in adipocytes.


Subject(s)
Adipocytes/physiology , Glucose Transporter Type 4/metabolism , Insulin/physiology , Proteomics , Tumor Suppressor Proteins/physiology , 3T3-L1 Cells , Animals , Male , Mice , Rats , Rats, Wistar , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...