Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 21(8): 1401-8, 2007.
Article in English | MEDLINE | ID: mdl-17370244

ABSTRACT

Electrospray ionization ion trap mass spectrometry has been used to distinguish three pairs of positional isomers of a new series of N-blocked hybrid peptides derived from repeats of phenylalanine(D)-beta3-h-valine/beta3-h-valine-phenylalanine(D) (FbetaV/betaVF) non-natural amino acids. MSn of protonated isomeric peptides produces characteristic fragmentation involving the peptide backbone, the Boc group and the side chain. FbetaV-peptides can be distinguished from betaVF-peptides by the loss of R-OH from [M+H-Boc+H]+, which is either of relatively low abundance or totally absent for the latter peptides. In contrast, betaVF-peptides show abundant Mannich base characteristic ions by the elimination of ammonia, and imine due to a retro-Mannich cleavage. This fragmentation is absent for FbetaV-peptides. When beta-valine is at the C-terminus, abundant b+(n-1) ions are produced. This is ascribed to the probable formation of a stable diketopiperazine structure, and this has been supported by the loss of H2O and CO in the CID spectra of b+(n-1) ions. The hybrid dipeptide acids have also been distinguished in negative ion mass spectrometry.


Subject(s)
Peptides/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Isomerism
3.
Rapid Commun Mass Spectrom ; 20(2): 151-6, 2006.
Article in English | MEDLINE | ID: mdl-16331727

ABSTRACT

Dissociative ionization of the selenourea Se=C(NH(2))(2) (2) conveniently generates beams of pure isocyanoselenic acid radical cations. The HNCSe(.+) connectivity is established by collisional activation and by associative ion-molecule reactions with dimethyl sulfide or nitric oxide using a large-scale hybrid mass spectrometer.


Subject(s)
Mass Spectrometry/methods , Microchemistry/methods , Organoselenium Compounds/analysis , Organoselenium Compounds/chemistry , Urea/analogs & derivatives , Cations , Free Radicals/analysis , Free Radicals/chemistry , Isomerism , Reproducibility of Results , Sensitivity and Specificity , Urea/analysis , Urea/chemistry
5.
J Mass Spectrom ; 39(9): 1068-74, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15386745

ABSTRACT

A mass spectral study of a series of new Boc-C-linked carbo-beta(3)-peptides prepared from C-linked carbo-beta(3)-amino acids (Caa) was carried out using liquid secondary ion mass spectrometry (LSIMS), electrospray ionization (ESI) and tandem mass spectrometry. Using the nomenclature of Roepstorff and Fohlman, the positive ion high- and low energy collision-induced dissociation (CID) of [M + H - Boc + H](+) ions of the peptides produce both N- and C-terminus ions, y(n) (+) and b(n) (+) ions, with high abundance and other ions of low abundance. Further, characteristic fragment ions of carbohydrate moiety are observed. In contrast to the CID of protonated peptide acids, the CID of [M - H](-) ions of the beta(3)-peptide acids do not give b(n)(-) ions and show abundant z(n)(-) and c(n) (-) ions which are insignificant in the former. Two pairs of positionally isomeric Boc-carbo-beta(3)-dipeptides were differentiated by the CID of [M + H](+) ions in LSIMS and ESIMS. The fragment ion [M + H - C(CH(3))(3) + H](+) formed from [M + H](+) by the loss of 2-methylprop-2-ene is relatively more abundant in the dipeptide Boc-NH-beta-hGly-Caa(S)-OCH(3) (14) containing the sugar moiety at the C-terminus whereas it is insignificant in Boc-NH-Caa(S)-beta-hGly-OCH(3) (13), which has the sugar moiety at the N-terminus. Similarly, two pairs of diastereomeric dipeptides were distinguished by the high- and low-energy CID of [M + H](+) ions. The loss of 2-methylprop-2-ene is more pronounced for Boc-NH-Caa(R)-beta-hGly-OCH(3) (17) and Boc-NH-Caa(R)-Caa(S)-OCH(3) (18) isomers whereas it is insignificant for Boc-NH-Caa(S)-beta-hGly-OCH(3) (13) and Boc-NH-Caa(S)-Caa(S)-OCH(3) (2) isomers. This was attributed to a favorable configuration of the carbohydrate moiety favoring the 'H' migration involved in the loss of 2-methylprop-2-ene from the [M + H](+) ions of isomers 17 and 18 compared with the unfavorable configuration of the carbohydrate moiety in isomers 13 and 2.


Subject(s)
Peptides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Dipeptides/chemistry , Models, Molecular , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...