Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 534: 133-8, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23196129

ABSTRACT

Transporters in the choroid plexus (CP) regulate transport of numerous compounds of physiological and therapeutic interest between blood and CSF and thus likely play a key role in determining CNS levels of drugs, toxins and metabolites. Here, high CP expression was noted for the organic anion transporters, Oat1 (SLC22A6 or NKT) and Oat3 (SLC22A8) which are also the principal Oats in the renal proximal tubule, as well as SLC22A17, hypothesized to be involved in iron transport. Because Oat1 and Oat3 have overlapping substrate specificity, ex vivo preparations of CP from Oat1((-/-)) and Oat3((-/-)) mice were used to isolate the individual transport function of each, respectively. Tissue from either knockout mouse mediated the probenecid-inhibitable transport of the Oat substrate, 6-carboxyfluorescein (6CF), confirming the presence of Oat1 and Oat3 function. Because many antiviral medications are Oat substrates, including those crucial in the treatment of HIV infections, the interaction of the antivirals zidovudine, acyclovir, tenofovir, lamivudine, and stavudine, with Oat1 and Oat3 in CP, was investigated by determining the inhibition of 6CF uptake. All the antivirals tested manifested significant interaction with both Oat1 and Oat3, with the exception of stavudine which did not significantly affect Oat1 function. These results could have important implications for antiretroviral (and other drugs) penetration into or retention within the CNS, a major reservoir for virus during HIV infection. Apart from any effect at the blood brain barrier (BBB), designing specific inhibitors of Oat1 and Oat3 may be helpful in altering CNS drug levels by blocking organic anion transporters in the CP. The role of SLC22A17 in the CP deserves further exploration. The ability of Oats to regulate the movement of small molecules across the BBB, CP, proximal tubule and other tissues may also be important for their role in remote sensing and signaling [1,21]).


Subject(s)
Anti-Retroviral Agents/metabolism , Choroid Plexus/metabolism , Organic Anion Transport Protein 1/genetics , Organic Anion Transporters, Sodium-Independent/genetics , Animals , Biological Transport , Fluoresceins/metabolism , Fluorescent Dyes/metabolism , Mice , Mice, Knockout , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Signal Transduction
2.
Am J Physiol Renal Physiol ; 302(10): F1293-9, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22338083

ABSTRACT

Tubular secretion of the organic cation, creatinine, limits its value as a marker of glomerular filtration rate (GFR) but the molecular determinants of this pathway are unclear. The organic anion transporters, OAT1 and OAT3, are expressed on the basolateral membrane of the proximal tubule and transport organic anions but also neutral compounds and cations. Here, we demonstrate specific uptake of creatinine into mouse mOat1- and mOat3-microinjected Xenopus laevis oocytes at a concentration of 10 µM (i.e., similar to physiological plasma levels), which was inhibited by both probenecid and cimetidine, prototypical competitive inhibitors of organic anion and cation transporters, respectively. Renal creatinine clearance was consistently greater than inulin clearance (as a measure of GFR) in wild-type (WT) mice but not in mice lacking OAT1 (Oat1-/-) and OAT3 (Oat3-/-). WT mice presented renal creatinine net secretion (0.23 ± 0.03 µg/min) which represented 45 ± 6% of total renal creatinine excretion. Mean values for renal creatinine net secretion and renal creatinine secretion fraction were not different from zero in Oat1-/- (-0.03 ± 0.10 µg/min; -3 ± 18%) and Oat3-/- (0.01 ± 0.06 µg/min; -6 ± 19%), with greater variability in Oat1-/-. Expression of OAT3 protein in the renal membranes of Oat1-/- mice was reduced to ∼6% of WT levels, and that of OAT1 in Oat3-/- mice to ∼60%, possibly as a consequence of the genes for Oat1 and Oat3 having adjacent chromosomal locations. Plasma creatinine concentrations of Oat3-/- were elevated in clearance studies under anesthesia but not following brief isoflurane anesthesia, indicating that the former condition enhanced the quantitative contribution of OAT3 for renal creatinine secretion. The results are consistent with a contribution of OAT3 and possibly OAT1 to renal creatinine secretion in mice.


Subject(s)
Creatinine/metabolism , Kidney/metabolism , Kidney/physiology , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Animals , Cimetidine/pharmacology , Creatinine/blood , Enzyme Inhibitors/pharmacology , Glomerular Filtration Rate/physiology , Kidney/drug effects , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oocytes/physiology , Organic Anion Transport Protein 1/genetics , Organic Anion Transport Protein 1/metabolism , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Organic Cation Transporter 2 , Probenecid/pharmacology , Uricosuric Agents/pharmacology , Xenopus laevis
3.
Bioorg Med Chem ; 19(11): 3320-40, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21571536

ABSTRACT

Organic anion transporter 1 (Oat1), first identified as NKT, is a multispecific transporter responsible for the handling of drugs and toxins in the kidney and choroid plexus, but its normal physiological role appears to be in small molecule metabolite regulation. Metabolites transported by Oat1 and which are altered in the blood and urine of the murine Oat1 knockout, may serve as templates for further drug design. This may lead to better tissue targeting of drugs or design of Oat1 inhibitors that prolong the half-life of current drugs. Due to the multispecificity of the transporter, 19 of known targeted metabolites have different chemical structures and properties that make constructing a common pharmacophore model difficult. Here we propose an approach that clustered the metabolites into four distinct groups which allowed for the construction of a consensus pharmacophore for each cluster. The screening of commercial molecular databases determined the top candidates whose interaction with Oat1 was confirmed in an experimental model of organic anion transport. Thus, these candidate selections represent potential molecules for further drug design.


Subject(s)
Organic Anion Transport Protein 1/antagonists & inhibitors , Pharmaceutical Preparations/metabolism , Animals , Cluster Analysis , Computer Simulation , Databases, Factual , Drug Design , Mice , Mice, Knockout , Organic Anion Transport Protein 1/genetics , Organic Anion Transport Protein 1/metabolism , Pharmaceutical Preparations/chemistry , ROC Curve
4.
J Proteome Res ; 10(6): 2842-51, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21476605

ABSTRACT

Untargeted metabolomics on the plasma and urine from wild-type and organic anion transporter-1 (Oat1/Slc22a6) knockout mice identified a number of physiologically important metabolites, including several not previously linked to Oat1-mediated transport. Several, such as indoxyl sulfate, derive from Phase II metabolism of enteric gut precursors and accumulate in chronic kidney disease (CKD). Other compounds included vitamins (pantothenic acid, 4-pyridoxic acid), urate, and metabolites in the tryptophan and nucleoside pathways. Three metabolites, indoxyl sulfate, kynurenine, and xanthurenic acid, were elevated in the plasma and interacted strongly and directly with Oat1 in vitro with IC50 of 18, 12, and 50 µM, respectively. A pharmacophore model based on several identified Oat1 substrates was used to screen the NCI database and candidate compounds interacting with Oat1 were validated in an in vitro assay. Together, the data suggest a complex, previously unidentified remote communication between the gut microbiome, Phase II metabolism in the liver, and elimination via Oats of the kidney, as well as indicating the importance of Oat1 in the handling of endogenous toxins associated with renal failure and uremia. The possibility that some of the compounds identified may be part of a larger remote sensing and signaling pathway is also discussed.


Subject(s)
Metabolome , Organic Anion Transport Protein 1/metabolism , Uremia/blood , Uremia/urine , Animals , Cell Membrane Permeability , Fluorescent Dyes , Indican/blood , Kynurenine/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Oocytes/metabolism , Organic Anion Transport Protein 1/antagonists & inhibitors , Pantothenic Acid/blood , Pyridoxic Acid/blood , Sulfuric Acid Esters/blood , Urinalysis , Xanthurenates/metabolism , Xanthurenates/urine , Xenopus
5.
J Biol Chem ; 286(1): 243-51, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-20921221

ABSTRACT

The organic anion transporters OAT1 (SLC22A6, originally identified by us as NKT) and OAT3 (SLC22A8) are critical for handling many toxins, metabolites, and drugs, including antivirals (Truong, D. M., Kaler, G., Khandelwal, A., Swaan, P. W., and Nigam, S. K. (2008) J. Biol. Chem. 283, 8654-8663). Although microinjected Xenopus oocytes and/or transfected cells indicate overlapping specificities, the individual contributions of these transporters in the three-dimensional context of the tissues in which they normally function remain unclear. Here, handling of HIV antivirals (stavudine, tenofovir, lamivudine, acyclovir, and zidovudine) was analyzed with three-dimensional ex vivo functional assays using knock-out tissue. To investigate the contribution of OAT1 and OAT3 in various nephron segments, the OAT-selective fluorescent tracer substrates 5-carboxyfluorescein and 6-carboxyfluorescein were used. Although OAT1 function (uptake in oat3(-/-) tissue) was confined to portions of the cortex, consistent with a proximal tubular localization, OAT3 function (uptake in oat1(-/-) tissue) was apparent throughout the cortex, indicating localization in the distal as well as proximal nephron. This functional localization indicates a complex three-dimensional context, which needs to be considered for metabolites, toxins, and drugs (e.g. antivirals) handled by both transporters. These results also raise the possibility of functional differences in the relative importance of OAT1 and OAT3 in antiviral handling in developing and mature tissue. Because the HIV antivirals are used in pregnant women, the results may also help in understanding how these drugs are handled by developing organs.


Subject(s)
Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Kidney/growth & development , Kidney/metabolism , Organ Culture Techniques/methods , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Animals , Biological Transport , Embryo, Mammalian , Female , Gene Knockout Techniques , Kidney/drug effects , Mice , Nephrons/drug effects , Nephrons/growth & development , Nephrons/metabolism , Organic Anion Transport Protein 1/deficiency , Organic Anion Transport Protein 1/genetics , Organic Anion Transporters, Sodium-Independent/deficiency , Organic Anion Transporters, Sodium-Independent/genetics
6.
J Biol Chem ; 282(33): 23841-53, 2007 Aug 17.
Article in English | MEDLINE | ID: mdl-17553798

ABSTRACT

Organic anion transporters (OATs, SLC22) interact with a remarkably diverse array of endogenous and exogenous organic anions. However, little is known about the structural features that determine their substrate selectivity. We examined the substrate binding preferences and transport function of olfactory organic anion transporter, Oat6, in comparison with the more broadly expressed transporter, Oat1 (first identified as NKT). In analyzing interactions of both transporters with over 40 structurally diverse organic anions, we find a correlation between organic anion potency (pKi) and hydrophobicity (logP) suggesting a hydrophobicity-driven association with transporter-binding sites, which appears particularly prominent for Oat6. On the other hand, organic anion binding selectivity between Oat6 and Oat1 is influenced by the anion mass and net charge. Smaller mono-anions manifest greater potency for Oat6 and di-anions for Oat1. Comparative molecular field analysis confirms these mechanistic insights and provides a model for predicting new OAT substrates. By comparative molecular field analysis, both hydrophobic and charged interactions contribute to Oat1 binding, although it is predominantly the former that contributes to Oat6 binding. Together, the data suggest that, although the three-dimensional structures of these two transporters may be very similar, the binding pockets exhibit crucial differences. Furthermore, for six radiolabeled substrates, we assessed transport efficacy (Vmax) for Oat6 and Oat1. Binding potency and transport efficacy had little correlation, suggesting that different molecular interactions are involved in substrate binding to the transporter and translocation across the membrane. Substrate specificity for a particular transporter may enable design of drugs for targeting to specific tissues (e.g. olfactory mucosa). We also discuss how these data suggest a possible mechanism for remote sensing between OATs in different tissue compartments (e.g. kidney, olfactory mucosa) via organic anions.


Subject(s)
Organic Anion Transporters/metabolism , Binding Sites , Hydrophobic and Hydrophilic Interactions , Kinetics , Molecular Structure , Organic Anion Transport Protein 1/metabolism , Static Electricity , Substrate Specificity
7.
Biochem Biophys Res Commun ; 351(4): 872-6, 2006 Dec 29.
Article in English | MEDLINE | ID: mdl-17094945

ABSTRACT

We have characterized the expression of organic anion transporter 6, Oat6 (slc22a20), in olfactory mucosa, as well as its interaction with several odorant organic anions. In situ hybridization reveals diffuse Oat6 expression throughout olfactory epithelium, yet olfactory neurons laser-capture microdissected from either the main olfactory epithelium (MOE) or the vomeronasal organ (VNO) did not express Oat6 mRNA. These data suggest that Oat6 is expressed in non-neuronal cells of olfactory tissue, such as epithelial and/or other supporting cells. We next investigated interaction of Oat6 with several small organic anions that have previously been identified as odortype components in mouse urine. We find that each of these compounds, propionate, 2- and 3-methylbutyrate, benzoate, heptanoate, and 2-ethylhexanoate, inhibits Oat6-mediated uptake of a labeled tracer, estrone sulfate, consistent with their being Oat6 substrates. Previously, we noted defects in the renal elimination of odortype and odortype-like molecules in Oat1 knockout mice. The finding that such molecules interact with Oat6 raises the possibility that odorants secreted into the urine through one OAT-mediated mechanism (Eraly et al., JBC 2006) are transported through the olfactory mucosa through another OAT-mediated mechanism. Oat6 might play a direct or indirect role in olfaction, such as modulation of the availability of odorant organic anions at the mucosal surface for presentation to olfactory neurons or facilitation of delivery to a distal site of chemosensation, among other possibilities that we discuss.


Subject(s)
Olfactory Mucosa/metabolism , Organic Anion Transporters/metabolism , Smell , Animals , Anions/metabolism , Benzoates/metabolism , Butyrates/metabolism , Caproates/metabolism , Cells, Cultured , Estrone/analogs & derivatives , Estrone/metabolism , Hemiterpenes , Heptanoates/metabolism , Ion Transport , Mice , Olfactory Mucosa/chemistry , Organic Anion Transporters/analysis , Organic Anion Transporters/genetics , Pentanoic Acids/metabolism , Propionates/metabolism , RNA, Messenger/analysis , RNA, Messenger/metabolism
8.
J Biol Chem ; 281(8): 5072-83, 2006 Feb 24.
Article in English | MEDLINE | ID: mdl-16354673

ABSTRACT

The "classical" organic anion secretory pathway of the renal proximal tubule is critical for the renal excretion of the prototypic organic anion, para-aminohippurate, as well as of a large number of commonly prescribed drugs among other significant substrates. Organic anion transporter 1 (OAT1), originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J. G., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471-6478), has physiological properties consistent with a role in this pathway. However, several other transporters (e.g. OAT2, OAT3, and MRP1) have also been proposed as important PAH transporters on the basis of in vitro studies; therefore, the relative contribution of OAT1 has remained unclear. We have now generated a colony of OAT1 knock-out mice, permitting elucidation of the role of OAT1 in the context of these other potentially functionally redundant transporters. We find that the knock-out mice manifest a profound loss of organic anion transport (e.g. para-aminohippurate) both ex vivo (in isolated renal slices) as well as in vivo (as indicated by loss of renal secretion). In the case of the organic anion, furosemide, loss of renal secretion in the knock-out results in impaired diuretic responsiveness to this drug. These results indicate a critical role for OAT1 in the functioning of the classical pathway. In addition, we have determined the levels of approximately 60 endogenous organic anions in the plasma and urine of wild-type and knock-out mice. This has led to identification of several compounds with significantly higher plasma concentrations and/or lower urinary concentrations in knock-out mice, suggesting the involvement of OAT1 in their renal secretion. We have also demonstrated in xenopus oocytes that some of these compounds interact with OAT1 in vitro. Thus, these latter compounds might represent physiological substrates of OAT1.


Subject(s)
Anions , Kidney/metabolism , Organic Anion Transport Protein 1/genetics , Organic Anion Transport Protein 1/physiology , Animals , Biological Transport , Blotting, Northern , Dose-Response Relationship, Drug , Female , Genotype , Hemodynamics , Heterozygote , Immunohistochemistry , Kinetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Genetic , Oocytes/metabolism , Phenotype , Polymerase Chain Reaction , Protein Binding , Recombination, Genetic , Xenopus , Xenopus laevis , p-Aminohippuric Acid/pharmacology
9.
Biochem Biophys Res Commun ; 323(2): 429-36, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15369770

ABSTRACT

The organic anion and cation transporters (OATs and OCTs) are a large family (SLC22) of transmembrane proteins that are able to transport a variety of compounds including drugs, environmental toxins, and endogenous metabolites. OATs are expressed in various tissues, primarily kidney and liver, but also in placenta, small intestine, and choroid plexus, which are all epithelial tissues that transport xenobiotics. The upper airway, particularly the nose, is also a site of frequent exposure to environmental toxins. Many drugs are administered intranasally. This raises the possibility that the olfactory epithelium contains OATs and OCTs. Here, we report the identification of a novel putative transporter, mouse OAT6, expressed predominantly in olfactory mucosa but not in kidney or brain. Sequence comparisons and intron phasing analysis indicated that OAT6 is closely related to OAT1 and OAT3. Unlike many other slc22 genes, OAT6 is unpaired in the genome, although it is in proximity to the OAT1/OAT3 gene pair. Expression of OAT6 was also observed in testis. Embryonic expression was observed at day 7, but not later in embryogenesis. This might be due to the need for a key metabolite transported by OAT6. The data raise the possibility that the olfactory mucosa may have a significant transport apparatus which could be important in the design of new therapeutic approaches for direct nose-to-brain transfer of drugs and olfaction. Supporting this possibility, we have demonstrated that OAT1, OCT1-2, and OCTN1-3 are also expressed in olfactory mucosa. Furthermore, e-blot data suggest very different expression of individual OATs, OCTs and OCTNs in kidney, brain, liver, and eye.


Subject(s)
Olfactory Mucosa/metabolism , Organic Anion Transporters/chemistry , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Sequence Analysis, Protein , Aging/metabolism , Amino Acid Sequence , Animals , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Organ Specificity , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...