Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38793369

ABSTRACT

In this article, a response of the complex-phase high-strength steel SZBS800 was modelled by considering the strain-rate influence. The material's response was first measured with a series of standard tensile tests at lower strain rates. Higher strain rates were achieved using the unconventional test of shooting the ball into flat specimens. A viscoplastic formulation of the Cowper-Symonds material model was applied to consider the strain-rate effects. The parameters SIGY, p, and C of the material model were estimated using a step-wise procedure. First, rough estimates of the three parameters were obtained from the tensile tests using the grid search method. Then, the parameters p and C were fine-tuned using the reverse engineering approach. With the help of explicit dynamic simulations and all the experimental data, a multi-criteria cost function was defined and applied to obtain a smooth response function for the parameters p and C. Its optimum was determined by a real-valued genetic algorithm. The optimal values of the estimated parameters model the material response well, although a domain of optimum candidates spans two orders of magnitude for the parameter p and a few orders of magnitude for the parameter C.

2.
Polymers (Basel) ; 16(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38794633

ABSTRACT

Due to their advantages-longer internal force delay compared to bulk materials, resistance to harsh conditions, damping of a wide frequency spectrum, insensitivity to ambient temperature, high reliability and low cost-granular materials are seen as an opportunity for the development of high-performance, lightweight vibration-damping elements (particle dampers). The performance of particle dampers is affected by numerous parameters, such as the base material, the size of the granules, the flowability, the initial prestress, etc. In this work, a series of experiments were performed on specimens with different combinations of influencing parameters. Energy-based design parameters were used to describe the overall vibration-damping performance. The results provided information for a deeper understanding of the dissipation mechanisms and their mutual correlation, as well as the influence of different parameters (base material, granule size and flowability) on the overall damping performance. A comparison of the performance of particle dampers with carbon steel and polyoxymethylene granules and conventional rubber dampers is given. The results show that the damping performance of particle dampers can be up to 4 times higher compared to conventional bulk material-based rubber dampers, even though rubber as a material has better vibration-damping properties than the two granular materials in particle dampers. However, when additional design features such as mass and stiffness are introduced, the results show that the overall performance of particle dampers with polyoxymethylene granules can be up to 3 times higher compared to particle dampers with carbon steel granules and conventional bulk material-based rubber dampers.

3.
Polymers (Basel) ; 15(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36904540

ABSTRACT

Granular materials promise opportunities for the development of high-performance, lightweight vibration-damping elements that provide a high level of safety and comfort. Presented here is an investigation of the vibration-damping properties of prestressed granular material. The material studied is thermoplastic polyurethane (TPU) in Shore 90A and 75A hardness grades. A method for preparing and testing the vibration-damping properties of tubular specimens filled with TPU granules was developed. A new combined energy parameter was introduced to evaluate the damping performance and weight-to-stiffness ratio. Experimental results show that the material in granular form provides up to 400% better vibration-damping performance as compared to the bulk material. Such improvement is possible by combining both the effect of the pressure-frequency superposition principle at the molecular scale and the effect of the physical interactions between the granules (force-chain network) at the macro scale. The two effects complement each other, with the first effect predominating at high prestress and the second at low prestress. Conditions can be further improved by varying the material of the granules and applying a lubricant that facilitates the granules to reorganize and reconfigure the force-chain network (flowability).

4.
Sensors (Basel) ; 22(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36236719

ABSTRACT

Hidden corrosion in aircraft structures, not detected on time, can have a significant influence on aircraft structural integrity and lead to catastrophic consequences. According to the widely accepted damage tolerance philosophy, non-destructive inspections are performed to assess structural safety and reliability. One of the inspection techniques used for such an inspection is the optical D-Sight technique. Since D-Sight is used primarily as a qualitative method, it is difficult to assess the evolution of a structural condition simply by comparing the inspection results. In the following study, the method to monitor hidden corrosion growth is proposed on the basis of historical data from D-Sight inspections. The method is based on geometric transforms and segmentation techniques to remove the influence of measurement conditions, such as the angle of observation or illumination, and to compare corroded regions for a sequence of D-Sight images acquired during historical inspections. The analysis of the proposed method was performed on the sequences of D-Sight images acquired from inspections of Polish military aircraft in the period from 2002 to 2017. The proposed method represents an effective tool for monitoring hidden corrosion growth in metallic aircraft structures based on a sequence of D-Sight images.

5.
Sensors (Basel) ; 21(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34960436

ABSTRACT

The problem of characterizing the structural residual life is one of the most challenging issues of the damage tolerance concept currently applied in modern aviation. Considering the complexity of the internal architecture of composite structures widely applied for aircraft components nowadays, as well as the additional complexity related to the appearance of barely visible impact damage, prediction of the structural residual life is a demanding task. In this paper, the authors proposed a method based on detection of structural damage after low-velocity impact loading and its classification with respect to types of acting stress on constituents of composite structures using the developed processing algorithm based on segmentation of 3D X-ray computed tomograms using the rebmix package, real-oriented dual-tree wavelet transform and supporting image processing procedures. The presented algorithm allowed for accurate distinguishing of defined types of damage from X-ray computed tomograms with strong robustness to noise and measurement artifacts. The processing was performed on experimental data obtained from X-ray computed tomography of a composite structure with barely visible impact damage, which allowed better understanding of fracture mechanisms in such conditions. The gained knowledge will allow for a more accurate simulation of structural damage in composite structures, which will provide higher accuracy in predicting structural residual life.


Subject(s)
Image Processing, Computer-Assisted , Wavelet Analysis , Algorithms , Artifacts , Tomography, X-Ray Computed , X-Rays
6.
Materials (Basel) ; 12(22)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717407

ABSTRACT

Magnesium is one of the lightest metals for structural components. It has been used for producing various lightweight cast components, but the application of magnesium sheet plates is less widespread. There are two reasons for this: (i) its poor formability at ambient temperatures; and (ii) insufficient data on its durability, especially for dynamic loading. In this article, an innovative approach to predicting the fatigue life of the AZ31 magnesium alloy is presented. It is based on an energy approach that links the strain-energy density with the fatigue life. The core of the presented methodology is a comprehensive new model for tensile and compressive loading paths, which makes it possible to calculate the strain-energy density of closed hysteresis loops. The model is universal for arbitrary strain amplitudes. The material parameters are determined from several low-cycle fatigue tests. The presented approach was validated with examples of variable strain histories.

7.
MethodsX ; 1: 81-9, 2014.
Article in English | MEDLINE | ID: mdl-26150939

ABSTRACT

The paper presents a method on how the mean stress effect on fatigue damage can be taken into account under an arbitrary low cycle thermo-mechanical loading. From known stress, elastoplastic strain and temperature histories the cycle amplitudes and cycle mean values are extracted and the damage parameter is computed. In contrast to the existing methods the proposed method enables continuous damage parameter computation without the need of waiting for the cycles to close. The limitations of the standardized damage parameters are thus surpassed. The damage parameters derived initially for closed and isothermal cycles assuming that the elastoplastic stress-strain response follows the Masing and memory rules can now be used to take the mean stress effect into account under an arbitrary low cycle thermo-mechanical loading. The method includes:•stress and elastoplastic strain history transformation into the corresponding amplitude and mean values;•stress and elastoplastic strain amplitude and mean value transformation into the damage parameter amplitude history;•damage parameter amplitude history transformation into the damage parameter history.

SELECTION OF CITATIONS
SEARCH DETAIL
...