Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-30296222

ABSTRACT

We report on the design, assembly, testing, and delivery of a series of new cesium fountain primary frequency standards built through commercial and scientific collaboration with international users. The new design, based on proven National Physical Laboratory solutions, improves reliability, simplicity of operation, and transportability. The complete system consists of a novel physics package, a specially developed optical package, and dedicated electronics for system control. We present results showing that despite their simplified and more compact design, the new fountains have state-of-the-art performance in terms of signal-to-noise ratio and robust long-term operation. With a sufficiently low-noise local oscillator, they are capable of reaching a short-term stability below 3×10-14 (1 s) and have potential accuracy in the low 10-16 range, similar to the best cesium fountains currently in operation. This cost-effective solution could be used to increase the availability of accurate frequency references and timescales and provide redundancy in critical locations.

2.
Opt Express ; 25(4): 3165-3179, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28241534

ABSTRACT

We present a two-species laser cooling apparatus capable of simultaneously collecting Rb and Hg atomic gases into a magneto-optical trap (MOT). The atomic sources, laser system, and vacuum set-up are described. While there is a loss of Rb atoms in the MOT due to photoionization by the Hg cooling laser, we show that it does not prevent simultaneous trapping of Rb and Hg. We also demonstrate interspecies collision-induced losses in the 87Rb-202Hg system.

3.
Opt Lett ; 38(22): 4581-4, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24322079

ABSTRACT

We report the absolute frequency measurements of rubidium 5S-7S two-photon transitions with a cw laser digitally locked to an atomic transition and referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm), insensitive to first-order in a magnetic field, is a promising candidate for frequency reference. The performed tests yielded more accurate transition frequencies than previously reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...