Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Anal Chem ; 96(23): 9362-9369, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38826107

ABSTRACT

Amyloid precursor protein (APP) plays a pivotal role in the pathology of Alzheimer's disease (AD). Since the fragmentation of the membrane-bound APP that results in the production of amyloid-ß peptides is the starting point for amyloid toxicity in AD, it is important to investigate the structure and dynamics of APP in a near-native lipid-bilayer environment. However, the reconstitution of APP into a stable and suitable membrane-mimicking lipid environment is a challenging task. In this study, the 99-residue C-terminal domain of APP is successfully reconstituted into polymer nanodiscs and characterized using size-exclusion chromatography, mass spectrometry, solution NMR, and magic-angle spinning solid-state NMR. In addition, the feasibility of using lipid-solubilizing polymers for isolating and characterizing APP in the native Escherichia. coli membrane environment is demonstrated.


Subject(s)
Amyloid beta-Protein Precursor , Nanostructures , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Nanostructures/chemistry , Escherichia coli , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Nuclear Magnetic Resonance, Biomolecular
2.
bioRxiv ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38659865

ABSTRACT

Amyloid precursor protein (APP) plays a pivotal role in the pathology of Alzheimer's disease. Since the fragmentation of the membrane-bound APP that results in the production of amyloid-beta peptides is the starting point for amyloid toxicity in AD, it is important to investigate the structure and dynamics of APP in a near-native lipid-bilayer environment. However, the reconstitution of APP into a stable/suitable membrane-mimicking lipid environment is a challenging task. In this study, the 99-residue C-terminal domain of APP is successfully reconstituted into polymer nanodiscs and characterized using size-exclusion chromatography, mass spectrometry, solution NMR, and magic-angle spinning solid-state NMR. In addition, the feasibility of using lipid-solubilizing polymers for isolating and characterizing APP in native E. coli membrane environment is demonstrated.

3.
Org Lett ; 26(12): 2445-2450, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38488174

ABSTRACT

This manuscript describes a concise synthesis of cinobufagin, a natural steroid of the bufadienolide family, from readily available dehydroepiandrosterone (DHEA), as well as its α5-epimer derived from 3-epi-andosterone. This synthesis features expedient installation of the 17ß-pyrone moiety with the 14ß,15ß-epoxide and the 16ß-acetoxy group using a photochemical regioselective singlet oxygen [4 + 2] cycloaddition followed by CoTPP-promoted in situ endoperoxide rearrangement to provide a 14ß,16ß-bis-epoxide in 64% yield with a 1.6:1 d.r. This ß,ß-bis-epoxide intermediate was subsequently subjected to a regioselective scandium(III) trifluoromethanesulfonate catalyzed House-Meinwald rearrangement to establish the 17ß-configuration. The synthesis of cinobufagin is achieved in 12 steps (LLS) and 7.6% overall yield, and we demonstrate that it could be used as a platform for the subsequent medicinal chemistry exploration of cinobufagin analogs such as cinobufagin 5α-epimer.

4.
ACS Med Chem Lett ; 15(2): 280-286, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38352829

ABSTRACT

This work describes the studies on the direct C3-glycosylation of the C19-hydroxylated cardiotonic steroids strophanthidol, anhydro-ouabagenin, and ouabagenin using a strategy based on in situ protection of the C5 and C19 hydroxyl groups with boronic acids. While this strategy resulted in a successful one-pot C3-selective glycosylation of strophanthidol and anhydro-ouabegenin, it failed to provide ouabain from ouabagenin. The neuroprotective activity of the synthetic and natural glycosides against LPS-induced neuroinflammation was explored in neonatal mouse primary glia cells. Co-administration of natural and synthetic C3-glycosides at 200 nM concentrations resulted in the significant reduction of the LPS-induced neuroinflammatory markers IL-6, IL-1, TNFα, and IKBKE, with the anhydro-ouabagenin-3-(α)-l-rhamnoside (anhydro-ouabain) showing the most significant effect. At the same time, unglycosylated anhydro-ouabagenin enhanced rather than suppressed LPS-induced neuroinflammation.

5.
Angew Chem Int Ed Engl ; 63(12): e202318876, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38267370

ABSTRACT

This manuscript describes the development of alkyne addition to the aziridine moiety of aziridinoquinoxalines using dual Ir(III)/Cu(I) catalytic system under green light-emitting diode (LED) photolysis (λmax =525 nm). This mild method features high levels of chemo- and regioselectivity and was used to generate 30 highly functionalized substituted dihydroquinoxalines in 36-98 % yield. This transformation was also carried asymmetrically using phthalazinamine-based chiral ligand to provide 9 chiral addition products in 96 : 4 to 86 : 14 e.r. The experimental and quantum chemical explorations of this reaction suggest a mechanism that involves Ir(III)-catalyzed triplet energy transfer followed by a ring-opening reaction ultimately leading to the formation of azomethine ylide intermediates. These azomethine intermediates undergo sequential protonation/copper(I) acetylide addition to provide the products.

6.
J Org Chem ; 88(23): 16467-16484, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37944478

ABSTRACT

This article describes the development of a recyclable polystyrene-based phosphonic acid resin and its use for the synthesis of immobilized glycosyl phosphonate donors and subsequent glycosylation reaction. This solid support was generated on a decagram scale from the commercially available Merrifield resin and subsequently functionalized via two different methods into eight different glycosylphosphonates. The resultant glycosylphosphonate-containing resins were obtained in 59-96% yields and were found to be bench-stable at room temperature. These donors could be activated using trifluoroborane etherate at 80 °C to react with various alcohol- and thiol-based acceptors to provide 17 different glycosides in good-to-excellent yields (53-98%). In addition, it was demonstrated that glycosylated resin could be recovered and recycled multiple times to regenerate immobilized glycosylphosphonate donors and could be subjected to on-resin glycan elongation.

7.
Org Lett ; 25(42): 7721-7726, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37853540

ABSTRACT

This article describes the asymmetric synthesis of chiral aziridinoquinoxalines using (R)-TRIP-catalyzed parallel kinetic resolution under transfer hydrogenation conditions. This resolution was successfully accomplished for 16 different substrates and led to highly enantioenriched diastereomers with the (R)-configuration of the newly formed stereocenter (32-61% yield and 64-99% ee for the (R,R,R)-diastereomers and 7-46% yield and 97-99% ee for the (S,S,R)-diastereomers). This process could be coupled to ring-opening of the (S,S,R)-diastereomer with thiophenol to produce chiral tetrahydroquinoxalines with three contiguous stereocenters.

8.
Org Lett ; 25(6): 966-971, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36739571

ABSTRACT

This letter describes the development of an α-selective glycosylation using l-oleandrose, a 2-deoxysugar that is frequently found in natural products, and its application to the total synthesis of the natural cardiotonic steroids oleandrin and beaumontoside. To improve the reaction diastereoselectivity and to minimize side-product formation, an extensive evaluation and optimization of the conditions leading to α-selective glycosylation of digitoxigenin with l-oleandrose-based donors was conducted. These studies led to the exploration of 8 different phosphine·acid complexes or salts and yielded HBr·PPh3 as the optimal catalyst, which provided in the cleanest α-glycosylation and produced protected beaumontoside in 67% yield. Subsequent application of these conditions to synthetic oleandrigenin afforded the desired α-product in 69% isolated yield─enabling the completion of the first synthesis of oleandrin in 17 steps (1.2% yield) from testosterone.


Subject(s)
Cardiac Glycosides , Glycosylation , Digitoxigenin
9.
Int J Mol Sci ; 23(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36499150

ABSTRACT

Several strands of investigation have established that a reduction in the levels of the cellular prion protein (PrPC) is a promising avenue for the treatment of prion diseases. We recently described an indirect approach for reducing PrPC levels that targets Na,K-ATPases (NKAs) with cardiac glycosides (CGs), causing cells to respond with the degradation of these pumps and nearby molecules, including PrPC. Because the therapeutic window of widely used CGs is narrow and their brain bioavailability is low, we set out to identify a CG with improved pharmacological properties for this indication. Starting with the CG known as oleandrin, we combined in silico modeling of CG binding poses within human NKA folds, CG structure-activity relationship (SAR) data, and predicted blood-brain barrier (BBB) penetrance scores to identify CG derivatives with improved characteristics. Focusing on C4'-dehydro-oleandrin as a chemically accessible shortlisted CG derivative, we show that it reaches four times higher levels in the brain than in the heart one day after subcutaneous administration, exhibits promising pharmacological properties, and suppresses steady-state PrPC levels by 84% in immortalized human cells that have been differentiated to acquire neural or astrocytic characteristics. Finally, we validate that the mechanism of action of this approach for reducing cell surface PrPC levels requires C4'-dehydro-oleandrin to engage with its cognate binding pocket within the NKA α subunit. The improved brain bioavailability of C4'-dehydro-oleandrin, combined with its relatively low toxicity, make this compound an attractive lead for brain CG indications and recommends its further exploration for the treatment of prion diseases.


Subject(s)
Cardiac Glycosides , Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Humans , Prion Proteins/metabolism , Creutzfeldt-Jakob Syndrome/metabolism , Cardiac Glycosides/therapeutic use , Prions/metabolism , Prion Diseases/drug therapy , Prion Diseases/metabolism , Brain/metabolism
10.
Org Lett ; 24(12): 2294-2298, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35298181

ABSTRACT

This manuscript describes the electrochemical synthesis of 17 different glycosyl fluorides in 73-98% yields on up to a 5 g scale that relies on the use of SF6 as an inexpensive and safe fluorinating agent. Cyclic voltammetry and related mechanistic studies carried out subsequently suggest that the active fluorinating species generated through the cathodic reduction of SF6 are transient under these reductive conditions and that the sulfur and fluoride byproducts are effectively scavenged by Zn(II) to generate benign salts.


Subject(s)
Fluorides , Sulfur
11.
J Am Chem Soc ; 143(44): 18592-18604, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34705439

ABSTRACT

This article describes studies on the regioselective acetal protection of monosaccharide-based diols using chiral phosphoric acids (CPAs) and their immobilized polymeric variants, (R)-Ad-TRIP-PS and (S)-SPINOL-PS, as the catalysts. These catalyst-controlled regioselective acetalizations were found to proceed with high regioselectivities (up to >25:1 rr) on various d-glucose-, d-galactose-, d-mannose-, and l-fucose-derived 1,2-diols and could be carried out in a regiodivergent fashion depending on the choice of chiral catalyst. The polymeric catalysts were conveniently recycled and reused multiple times for gram-scale functionalizations with catalytic loadings as low as 0.1 mol %, and their performance was often found to be superior to the performance of their monomeric variants. These regioselective CPA-catalyzed acetalizations were successfully combined with common hydroxyl group functionalizations as single-pot telescoped procedures to produce 32 regioisomerically pure differentially protected mono- and disaccharide derivatives. To further demonstrate the utility of the polymeric catalysts, the same batch of (R)-Ad-TRIP-PS catalyst was recycled and reused to accomplish single-pot gram-scale syntheses of 6 differentially protected d-glucose derivatives. The subsequent exploration of the reaction mechanism using NMR studies of deuterated and nondeuterated substrates revealed that low-temperature acetalizations happen via a syn-addition mechanism and that the reaction regioselectivity exhibits strong dependence on the temperature. The computational studies indicate a complex temperature-dependent interplay of two reaction mechanisms, one involving an anomeric phosphate intermediate and another via concerted asynchronous formation of an acetal, that results in syn-addition products. The computational models also explain the steric factors responsible for the observed C2 selectivities and are consistent with experimentally observed selectivity trends.


Subject(s)
Acetals/chemistry , Carbohydrates/chemical synthesis , Catalysis , Models, Molecular , Molecular Structure
12.
J Org Chem ; 86(15): 10249-10262, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34255963

ABSTRACT

This article describes a concise synthesis of cardiotonic steroids oleandrigenin (7) and its subsequent elaboration into the natural product rhodexin B (2) from the readily available intermediate (8) that could be derived from the commercially available steroids testosterone or DHEA via three-step sequences. These studies feature an expedient installation of the ß16-oxidation based on ß14-hydroxyl-directed epoxidation and subsequent epoxide rearrangement. The following singlet oxygen oxidation of the C17 furan moiety provides access to oleandrigenin (7) in 12 steps (LLS) and a 3.1% overall yield from 8. The synthetic oleandrigenin (7) was successfully glycosylated with l-rhamnopyranoside-based donor 28 using a Pd(II)-catalyst, and the subsequent deprotection under acidic conditions provided cytotoxic natural product rhodexin B (2) in a 66% yield (two steps).


Subject(s)
Antineoplastic Agents , Cardiac Glycosides , Cardenolides , Oxidation-Reduction
13.
Org Lett ; 23(1): 190-194, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33354969

ABSTRACT

This study describes a new convenient method for the photocatalytic generation of glycosyl fluorides using sulfur(VI) hexafluoride as an inexpensive and safe fluorinating agent and 4,4'-dimethoxybenzophenone as a readily available organic photocatalyst. This mild method was employed to generate 16 different glycosyl fluorides, including the substrates with acid and base labile functionalities, in yields of 43%-97%, and it was applied in continuous flow to accomplish fluorination on an 7.7 g scale and 93% yield.


Subject(s)
Fluorides/chemical synthesis , Sulfur/chemistry , Fluorides/chemistry , Halogenation , Molecular Structure
14.
European J Org Chem ; 2020(7): 755-776, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32601521

ABSTRACT

The rich biology associated with steroids dictates a growing demand for the new synthetic strategies that would improve the access to natural and unnatural representatives of this family. The recent advances in the field of catalysis have greatly impacted the field of natural product synthesis including the synthesis of steroids. This article provides a short overview of the recent progress in the synthesis of steroids that was enabled by the advances in catalysis.

15.
Chem Commun (Camb) ; 56(60): 8432-8435, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32579621

ABSTRACT

New and readily available chiral SPIROL-based diphosphinite ligands (SPIRAPO) have been prepared and employed for iridium-catalyzed asymmetric hydrogenations of quinolines, quinoxalines and 2H-1,4-bezoxazin-2-ones. While the structurally similar (R,R,R)-SPIRAPO and (R)-SPINOL-based phosphinites were not the best ligands for these transformations, the (S,R,R)-diastereomer of SPIRAPO was found to be highly effective ligand for the reduction of 20 different heterocyclic systems with loadings as low as S/C = 10 000. This dearomatizative hydrogenation provided direct access to optically active tetrahydroquinolines in high enantioselectivities (up to 94% ee) and excellent yields (up to 99%), and was used to generate 1.75 g of natural alkaloid (-)-(R)-angustureine. This protocol was subsequently extended to achieve asymmetric hydrogenation of quinoxalines and 2H-1,4-benzoxazin-2-ones in good to excellent enantioselectivities.

16.
Chemistry ; 26(20): 4583-4591, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-31905253

ABSTRACT

This article presents a new strategy for achieving regiocontrol over the endo versus exo modes of cycloisomerizations of epoxide-containing alcohols, which leads to the formation of five- or six-membered cyclic ethers. Unlike traditional methods relying on achiral reagents or enzymes, this approach utilizes chiral phosphoric acids to catalyze the regiodivergent selective formations of either tetrahydrofuran- or tetrahydropyran-containing products. By using methyl ester of epoxide-containing antibiotic mupirocin as the substrate, it is demonstrated that catalytic chiral phosphoric acids (R)-TCYP and (S)-TIPSY could be used to achieve the selective formation of either the six-membered endo product (95:5 r.r.) or the five-membered exo product (77:23 r.r.), correspondingly. This cyclization was found to be unselective under the standard conditions involving various achiral acids, bases, or buffers. The subsequent mechanistic studies using state-of-the-art quantum chemical solutions provided the description of the potential energy surface, which is fully consistent with the experimental observations. Based on these results, highly detailed reaction paths are obtained and a concerted and highly synchronous mechanism is proposed for the formation of both exo and endo products.

17.
J Antibiot (Tokyo) ; 72(6): 437-448, 2019 06.
Article in English | MEDLINE | ID: mdl-30948784

ABSTRACT

This manuscript describes a single pot protocol for the selective introduction of unprotected sugars to the C3 position of the cardiotonic steroid strophanthidol. These reactions proceed with high levels of regiocontrol (>20:1 rr) in the presence of three other hydroxyl functionalities including the C19 primary hydroxyl group and could be applied to different sugars to provide the deprotected cardiac glycosides upon work up (5 examples, 77-69% yield per single operation). The selective glycosylation of the less reactive C3 position is accomplished by the use of traceless protection with methylboronic acid that blocks the C5 and C19 hydroxyls by forming a cyclic boronic ester, followed by in situ glycosylation and a work up with ammonia in methanol to remove the boronic ester and the carbohydrate ester protecting groups.


Subject(s)
Boron Compounds/chemistry , Cardenolides/chemistry , Glycosides/chemistry , Glycosylation , Molecular Structure
18.
J Am Chem Soc ; 141(12): 4849-4860, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30802047

ABSTRACT

A Cu(II)-catalyzed diastereoselective Michael/aldol cascade approach is used to accomplish concise total syntheses of cardiotonic steroids with varying degrees of oxygenation including cardenolides ouabagenin, sarmentologenin, 19-hydroxysarmentogenin, and 5- epi-panogenin. These syntheses enabled the subsequent structure activity relationship (SAR) studies on 37 synthetic and natural steroids to elucidate the effect of oxygenation, stereochemistry, C3-glycosylation, and C17-heterocyclic ring. Based on this parallel evaluation of synthetic and natural steroids and their derivatives, glycosylated steroids cannogenol-l-α-rhamnoside (79a), strophanthidol-l-α-rhamnoside (92), and digitoxigenin-l-α-rhamnoside (97) were identified as the most potent steroids demonstrating broad anticancer activity at 10-100 nM concentrations and selectivity (nontoxic at 3 µM against NIH-3T3, MEF, and developing fish embryos). Further analyses indicate that these molecules show a general mode of anticancer activity involving DNA-damage upregulation that subsequently induces apoptosis.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Ouabain/analogs & derivatives , Oxygen/chemistry , Animals , Antineoplastic Agents/chemistry , Cell Line , Chemistry Techniques, Synthetic , Mice , Ouabain/chemical synthesis , Ouabain/chemistry , Ouabain/pharmacology , Stereoisomerism , Structure-Activity Relationship
19.
Org Lett ; 20(7): 2067-2070, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29560721

ABSTRACT

This work describes the development of a new single-pot copper(II)-catalyzed decarboxylative Michael reaction between ß-keto acids and enones, followed by in situ aldolization, which results in highly functionalized chiral and achiral cyclohexenones. The achiral version of this Robinson annulation features a hitherto unprecedented Michael reaction of ß-keto acids with sterically hindered ß,ß'-substituted enones and provides access to all carbon quaternary stereocenter-containing cyclohexenones (11 examples, 43-83% yield). In addition, an asymmetric chiral bis(oxazoline) copper(II)-catalyzed single-pot Robinson annulation has been devised for preparing chiral cyclohexenones, including some products that contain vicinal stereocenters (5 examples, 65-85% yield, 84-94% ee). This latter protocol has been successfully applied to the enantioselective formation of the oxygenated 10-nor-steroid core from readily available starting materials.


Subject(s)
Copper/chemistry , Aldehydes , Catalysis , Cyclohexanones , Molecular Structure , Stereoisomerism
20.
Angew Chem Int Ed Engl ; 57(19): 5325-5329, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29473275

ABSTRACT

We present an expedient and economical route to a new spiroketal-based C2 -symmetric chiral scaffold, termed SPIROL. Based on this spirocyclic scaffold, several chiral ligands were generated. These ligands were successfully employed in an array of stereoselective transformations, including in iridium-catalyzed hydroarylations (up to 95 % ee), palladium-catalyzed allylic alkylations (up to 97 % ee), intermolecular palladium-catalyzed Heck couplings (up to 94 % ee), and rhodium-catalyzed dehydroalanine hydrogenation (up to 93 % ee).

SELECTION OF CITATIONS
SEARCH DETAIL
...