ABSTRACT
The fall armyworm (Spodoptera frugiperda) (J. E. Smith) (Lepidoptera: Noctuidae), a major agricultural pest in the Western Hemisphere, has recently become established in Africa and Asia. This highly polyphagous species has potential to economically harm multiple crops. Contributing to this host range are two fall armyworm populations historically called 'host strains' that differ in host specificity. Understanding behaviors of the two strains is crucial to effective management of this pest. A major difficulty in such studies is that strains have long been considered morphologically indistinguishable, with molecular markers the only reliable means of identification. However, studies of fall armyworm in Colombia reported strain differences in wing morphology sufficiently large to potentially provide a more economical alternative method to determine strain. This study tested whether a similar phenotypic difference was present in Florida populations using geometric morphometric analysis of 15 anatomical landmarks on forewings of 182 specimens from three habitats associated with different host plants. Principle component and linear discriminant analyses identified significant differences in wing size and shape in comparison of strains from different habitats, but not between strains within the same habitat. Data indicate that apparent strain distinctions in wing phenotype are most likely a secondary consequence of differences in developmental growth patterns on different host plants combined with strain-biased host choice. Furthermore, Florida specimens showed much larger phenotypic overlap than observed for strains from Colombia. Together these findings suggest that wing morphology is probably not a reliable indicator of strain identity in field populations where different host plants are available.