Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 100(5): 1569-76, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17972634

ABSTRACT

Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), or fall armyworm, is an important agricultural pest of several crops in the Western Hemisphere, including cotton (Gossypium L.). Two morphologically identical host strains of fall armyworm exist that differ in plant host use and habitat distribution. The corn-strain is a primary pest of corn, Zea mays L., whereas the rice-strain is the majority population infesting rice (Oryza spp.) and turfgrass (Cynodon spp.). With the increased use of Bacillus thuringiensis (Bt) toxin-expressing cotton varieties and the necessity of ensuring adequate refuge areas to prevent the spread of Bt toxin resistance, it is crucial to identify the alternative plant hosts available for the fall armyworm population infesting cotton. Stable isotope analysis combined with the molecular analysis of strain-specific markers was used to investigate whether one or both strains routinely develop on cotton grown in the Mississippi delta. We found that the majority of fall armyworm adults present during the early cotton growing season arose from C4 plants (e.g., corn and sorghum, Sorghum vulgare Pers.) and that the only strain likely to be developing on cotton (a C3 plant) in substantial numbers was the corn-strain. The population distribution patterns observed were consistent with corn providing an important refuge for the fall armyworm strain infesting cotton and suggested that late season populations in the Mississippi delta may be migrants from more northern corn areas.


Subject(s)
Ecosystem , Spodoptera/physiology , Animals , Carbon Isotopes , Gossypium/parasitology , Mississippi , Plants/classification , Plants/parasitology , Population Dynamics
2.
J Econ Entomol ; 100(3): 954-61, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17598561

ABSTRACT

Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a major economic pest throughout the Western Hemisphere. Populations can be subdivided into two morphologically identical but genetically distinct strains (corn-strain and rice-strain) that differ in their host plant preferences. These strains can be distinguished by using polymorphisms in the mitochondrial cytochrome oxidase 1 gene. Additional sequence analysis of this locus identified two sites that were highly polymorphic in the corn-strain population and that produced four different haplotype subgroups. Comparisons of the frequency distribution of these haplotypes found no seasonal or plant host specificities, but they did demonstrate that the Brazil corn-strain population is different from corn-strain fall armyworm found in Florida. The development of a rapid means of distinguishing fall armyworm populations originating from Brazil versus Florida provides an opportunity for investigating and comparing the genetic complexity and long-range movements of this important agricultural pest.


Subject(s)
Haplotypes , Moths/genetics , Animals , Brazil , DNA, Mitochondrial/chemistry , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/genetics , Florida , Geography , Larva/classification , Larva/genetics , Moths/classification , Polymorphism, Genetic , Seasons , Sequence Analysis, DNA , Sorghum/parasitology , Zea mays/parasitology
3.
J Econ Entomol ; 99(3): 671-7, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16813297

ABSTRACT

Several restriction sites in the cytochrome oxidase I gene of fall armyworm, Spodoptera frugiperda (J.E. Smith), were identified by sequence analysis as potentially being specific to one of the two host strains. Strain specificity was demonstrated for populations in Florida, Texas, Mississippi, Georgia, and North Carolina, with an AciI and SacI site specific to the rice (Oryjza spp.)-strain and a BsmI and HinfI site joining an already characterized MspI site as diagnostic of the corn (Zea mays L.)-strain. All four of these sites can be detected by digestion of a single 568-bp polymerase chain reaction-amplified fragment, but the use of two enzymes in separate digests was found to provide accurate and rapid determination of strain identity. The effectiveness of this method was demonstrated by the analysis of almost 200 adult and larval specimens from the Mississippi delta region. The results indicated that the corn-strain is likely to be the primary strain infesting cotton (Gossypium spp.) and that an unexpected outbreak of fall armyworm on the ornamental tree Paulownia tomentosa (Thunb.) Sieb. & Zucc. ex Steud. was due almost entirely to the rice-strain.


Subject(s)
Electron Transport Complex IV/genetics , Polymorphism, Restriction Fragment Length , Spodoptera/genetics , Animals , Life Cycle Stages , Male , Plants/parasitology , Southeastern United States
4.
Arthropod Struct Dev ; 31(1): 51-63, 2002 Sep.
Article in English | MEDLINE | ID: mdl-18088970

ABSTRACT

The doublesex-dependent sex regulatory pathway in Drosophila controls major aspects of somatic sexual differentiation, but its expression is not required in the X/X germline. Nevertheless, mutations in doublesex and in the genes that directly regulate its expression, transformer and transformer-2, disrupt early stages of oogenic differentiation to produce gonads containing immature germ cells. This indicates a critical, but uncharacterized, set of soma-germline interactions essential for oogenesis. In this paper, we examined the effects of mutations in transformer-2 on the expression and function of the germline-specific ovarian tumor gene. We demonstrated that in transformer-2 mutants, there was a marked reduction in the activity of the ovarian tumor promoter in the mutant germline. In addition, the phenotypic effects on the arrested germline could be partially suppressed by the simultaneous over-expression of both ovarian tumor and a second germline gene, Sex-lethal. This differs from transformer mutations, in which the over-expression of ovarian tumor alone is sufficient for a similar improvement in germline differentiation. In contrast to transformer-2, doublesex activity was not required for ovarian tumor promoter activity and we found indirect evidence that the doublesex male-specific function might have a negative regulatory effect. These data indicate that the components of the genetic pathway regulating somatic sexual differentiation have specific and differential effects on germline gene activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...