Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361927

ABSTRACT

We revealed the difference in the mechanism of photodynamic therapy (PDT) between two photosensitizers: porphylipoprotein (PLP), which has recently attracted attention for its potential to be highly effective in treating cancer, and talaporphyrin sodium (NPe6). (1) NPe6 accumulates in lysosomes, whereas PLP is incorporated into phagosomes formed by PLP injection. (2) PDT causes NPe6 to generate reactive oxygen species, thereby producing actin filaments and stress fibers. In the case of PLP, however, reactive oxygen species generated by PDT remain in the phagosomes until the phagosomal membrane is destroyed, which delays the initiation of RhoA activation and RhoA*/ROCK generation. (4) After the disruption of the phagosomal membrane, however, the outflow of various reactive oxygen species accelerates the production of actin filaments and stress fibers, and blebbing occurs earlier than in the case of NPe6. (5) PLP increases the elastic modulus of cells without RhoA activity in the early stage. This is because phagosomes are involved in polymerizing actin filaments and pseudopodia formation. Considering the high selectivity and uptake of PLP into cancer cells, a larger effect with PDT can be expected by skillfully combining the newly discovered characteristics, such as the appearance of a strong effect at an early stage.


Subject(s)
Photochemotherapy , Porphyrins , Reactive Oxygen Species , Sodium , Porphyrins/pharmacology , Photosensitizing Agents/therapeutic use
2.
RSC Adv ; 12(10): 5878-5889, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35424553

ABSTRACT

Photodynamic therapy (PDT) is a method in which a photosensitizer is administered in vivo and irradiated with light to generate reactive oxygen species (ROS), thereby causing the selective death of cancer cells. Since PDT is a noninvasive cancer treatment method with few adverse effects, it has attracted considerable attention and is increasingly used. In PDT, there are two dominant processes based on the actin filament (A-filament) formation effect: the destruction of cells by necrosis and vascular shutdown. Despite the importance of its fine control, the mechanism of the reaction process from the generation of reactive oxygen by photoinduction inducing the formation of A-filament and its polymerization to form stress fibers (S-fibers) has not yet been clarified because, for example, it has been difficult to directly observe and quantify such processes in living cells by conventional methods. Here, we have combined atomic force microscopy (AFM) with other techniques to reveal the mechanism of the A-filament and S-fiber formation processes that underlie the cell death process due to PDT. First, it was confirmed that activation of the small G protein RhoA, which is a signal that induces an increase in A-filament production, begins immediately after PDT treatment. The production of A-filament did not increase with increasing light intensity when the amount of light was large. Namely, the activation of RhoA reached an equilibrium state in about 1 min: however, the production of A-filament and its polymerization continued. The observed process corresponds well with the change in the amount of phosphorylated myosin-light chains, which induce A-filament polymerization. The increase in the elastic modulus of cells following the formation of S-fiber was confirmed by AFM for the first time. The distribution of generated A-filament and S-fiber was consistent with the photosensitizer distribution. PDT increases A-filament production, and when the ROS concentration is high, blebbing occurs and cells die, but when it is low, cell death does not occur and S-fiber is formed. That is, it is expected that vascular shutdown can be controlled efficiently by adjusting the amount of photosensitizer and the light intensity.

SELECTION OF CITATIONS
SEARCH DETAIL
...