Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Neurodev Disord ; 10(1): 18, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29859039

ABSTRACT

BACKGROUND: Genetic studies in autism have pinpointed a heterogeneous group of loci and genes. Further, environment may be an additional factor conferring susceptibility to autism. Transcriptome studies investigate quantitative differences in gene expression between patient-derived tissues and control. These studies may pinpoint genes relevant to pathophysiology yet circumvent the need to understand genetic architecture or gene-by-environment interactions leading to disease. METHODS: We conducted alternate gene set enrichment analyses using differentially expressed genes from a previously published RNA-seq study of post-mortem autism cerebral cortex. We used three previously published microarray datasets for validation and one of the microarray datasets for additional differential expression analysis. The RNA-seq study used 26 autism and 33 control brains in differential gene expression analysis, and the largest microarray dataset contained 15 autism and 16 control post-mortem brains. RESULTS: While performing a gene set enrichment analysis of genes differentially expressed in the RNA-seq study, we discovered that genes associated with mitochondrial function were downregulated in autism cerebral cortex, as compared to control. These genes were correlated with genes related to synaptic function. We validated these findings across the multiple microarray datasets. We also did separate differential expression and gene set enrichment analyses to confirm the importance of the mitochondrial pathway among downregulated genes in post-mortem autism cerebral cortex. CONCLUSIONS: We found that genes related to mitochondrial function were differentially expressed in autism cerebral cortex and correlated with genes related to synaptic transmission. Our principal findings replicate across all datasets investigated. Further, these findings may potentially replicate in other diseases, such as in schizophrenia.


Subject(s)
Autism Spectrum Disorder/genetics , Cerebral Cortex/metabolism , Mitochondria/metabolism , Synaptic Transmission/genetics , Down-Regulation , Female , Gene Expression Profiling , Humans , Male , Synapses/genetics , Transcriptome
2.
Proc Natl Acad Sci U S A ; 113(38): E5598-607, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27601654

ABSTRACT

Mutations that cause neurological phenotypes are highly informative with regard to mechanisms governing human brain function and disease. We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in large kindreds initially ascertained for intellectual and developmental disability (IDD). GPT2 [also known as alanine transaminase 2 (ALT2)] is one of two related transaminases that catalyze the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate. In addition to IDD, all affected individuals show postnatal microcephaly and ∼80% of those followed over time show progressive motor symptoms, a spastic paraplegia. Homozygous nonsense p.Arg404* and missense p.Pro272Leu mutations are shown biochemically to be loss of function. The GPT2 gene demonstrates increasing expression in brain in the early postnatal period, and GPT2 protein localizes to mitochondria. Akin to the human phenotype, Gpt2-null mice exhibit reduced brain growth. Through metabolomics and direct isotope tracing experiments, we find a number of metabolic abnormalities associated with loss of Gpt2. These include defects in amino acid metabolism such as low alanine levels and elevated essential amino acids. Also, we find defects in anaplerosis, the metabolic process involved in replenishing TCA cycle intermediates. Finally, mutant brains demonstrate misregulated metabolites in pathways implicated in neuroprotective mechanisms previously associated with neurodegenerative disorders. Overall, our data reveal an important role for the GPT2 enzyme in mitochondrial metabolism with relevance to developmental as well as potentially to neurodegenerative mechanisms.


Subject(s)
Brain/growth & development , Mitochondria/enzymology , Nervous System Diseases/genetics , Transaminases/genetics , Amino Acid Sequence/genetics , Animals , Brain/metabolism , Brain/pathology , Citric Acid Cycle/genetics , Homozygote , Humans , Ketoglutaric Acids/metabolism , Mice , Mitochondria/pathology , Mutation, Missense , Nervous System Diseases/pathology , Phenotype , Pyruvic Acid/metabolism , Transaminases/metabolism
3.
Am J Med Genet B Neuropsychiatr Genet ; 168(8): 720-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26365303

ABSTRACT

Oxytocin regulates social behavior in animal models. Research supports an association between genetic variation in the oxytocin receptor gene (OXTR) and autism spectrum disorders (ASD). In this study, we examine the association between the OXTR gene and a specific social phenotype within ASD. This genotype-phenotype investigation may provide insight into how OXTR conveys risk for social impairment. The current study investigated 10 SNPS in the OXTR gene that have been previously shown to be associated with ASD. We examine the association of these SNPs with both a social phenotype and a repetitive behavior phenotype comprised of behaviors commonly impaired in ASD in the Simons simplex collection (SSC). Using a large sample to examine the association between OXTR and ASD (n = range: 485-1002), we find evidence to support a relation between two OXTR SNPs and the examined social phenotype among children diagnosed with ASD. Greater impairment on the social responsiveness scale standardized total score and on several subdomains was observed among individuals with one or more copies of the minor frequency allele in both rs7632287 and rs237884. Linkage disequilibrium (LD) mapping suggests that these two SNPs are in LD within and overlapping the 3' untranslated region (3'-UTR) of the OXTR gene. These two SNPs were also associated with greater impairment on the repetitive behavior scale. Results of this study indicate that social impairment and repetitive behaviors in ASD are associated with genomic variation in the 3'UTR of the OXTR gene. These variants may be linked to an allele that alters stability of the mRNA message although further work is necessary to test this hypothesis.


Subject(s)
Autism Spectrum Disorder/genetics , Receptors, Oxytocin/genetics , Autism Spectrum Disorder/psychology , Child , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Humans , Linkage Disequilibrium , Male , Polymorphism, Single Nucleotide , Social Behavior , Stereotyped Behavior
4.
Am J Hum Genet ; 93(1): 103-9, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23830515

ABSTRACT

Intellectual disability (ID), often attributed to autosomal-recessive mutations, occurs in 40% of autism spectrum disorders (ASDs). For this reason, we conducted a genome-wide analysis of runs of homozygosity (ROH) in simplex ASD-affected families consisting of a proband diagnosed with ASD and at least one unaffected sibling. In these families, probands with an IQ ≤ 70 show more ROH than their unaffected siblings, whereas probands with an IQ > 70 do not show this excess. Although ASD is far more common in males than in females, the proportion of females increases with decreasing IQ. Our data do support an association between ROH burden and autism diagnosis in girls; however, we are not able to show that this effect is independent of low IQ. We have also discovered several autism candidate genes on the basis of finding (1) a single gene that is within an ROH interval and that is recurrent in autism or (2) a gene that is within an autism ROH block and that harbors a homozygous, rare deleterious variant upon analysis of exome-sequencing data. In summary, our data suggest a distinct genetic architecture for participants with autism and co-occurring intellectual disability and that this architecture could involve a role for recessively inherited loci for this autism subgroup.


Subject(s)
Child Development Disorders, Pervasive/genetics , Genetic Association Studies/methods , Intellectual Disability/genetics , Child , Chromosomes, Human/genetics , Female , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease/genetics , Genetics, Population/methods , Homozygote , Humans , Intelligence Tests , Male , Pedigree , Phenotype , Sex Factors
5.
J Am Acad Child Adolesc Psychiatry ; 52(4): 414-430.e14, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23582872

ABSTRACT

OBJECTIVE: The purpose of the present study was to discover the extent to which distinct DSM disorders share large, highly recurrent copy number variants (CNVs) as susceptibility factors. We also sought to identify gene mechanisms common to groups of diagnoses and/or specific to a given diagnosis based on associations with CNVs. METHOD: Systematic review of 820 PubMed articles on autism spectrum disorder (ASD), intellectual disability (ID), schizophrenia, and epilepsy produced 54 CNVs associated with one or several disorders. Pathway analysis on genes implicated by CNVs in different groupings was conducted. RESULTS: The majority of CNVs were found in ID with the other disorders somewhat subsumed, yet certain CNVs were associated with isolated or groups of disorders. Based on genes implicated by CNVs, ID encompassed 96.8% of genes in ASD, 92.8% of genes in schizophrenia, and 100.0% of genes in epilepsy. Pathway analysis revealed that synapse processes were enriched in ASD, ID, and schizophrenia. Disease-specific processes were identified in ID (actin cytoskeleton processes), schizophrenia (ubiquitin-related processes), and ASD (synaptic vesicle transport and exocytosis). CONCLUSIONS: Intellectual disability may arise from the broadest range of genetic pathways, and specific subsets of these pathways appear to be relevant to other disorders or combinations of these disorders. It is clear that statistically significant CNVs across disorders of cognitive development are highly enriched for biological processes related to the synapse. There are also disorder-specific processes that may aid in understanding the distinct presentations and pathophysiology of these disorders.


Subject(s)
DNA Copy Number Variations/genetics , Genetic Predisposition to Disease/genetics , Intellectual Disability/genetics , Mental Disorders/genetics , Humans
6.
Genomics ; 99(1): 44-51, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22032952

ABSTRACT

Genome-wide characterization of the retinal transcriptome is central to understanding development, physiology and disorders of the visual system. Massively parallel, short-read sequencing of mRNA libraries was used to generate an extensive map of the transcriptome of the adult, murine neural retina. RNA-seq data strongly corroborates prior transcriptome studies by microarray and SAGE. However, several novel features of the retinal transcriptome were discovered. For example, retinal disease genes were discovered to be among the most highly expressed in the transcriptome. We also demonstrate other interesting features of the retinal transcriptome, for example, that the retina appears to employ a very specific and restricted set of synaptic vesicle genes, and also that there is persistence of expression of a majority of "neurodevelopmental" genes into adulthood. Retina transcriptome studies utilizing novel sequencing methods have been highly informative and these data may also serve as a resource for the community of researchers.


Subject(s)
Gene Expression Profiling/methods , Genome , Retina/physiology , Sequence Analysis, RNA/methods , Alternative Splicing , Animals , Gene Expression , High-Throughput Nucleotide Sequencing , Mice , Mice, Inbred Strains , Retina/cytology , Retinal Diseases/genetics , Retinal Neurons/physiology , Synaptic Vesicles/genetics
7.
J Biomol Tech ; 20(5): 272-7, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19949701

ABSTRACT

A label-free quantification strategy including the development of in-house software (NakedQuant) to calculate the average TIC across all spectral counts in tandem affinity purification (TAP)-tagging liquid chromatography-mass spectrometry MS/MS (LC/MS/MS) experiments was applied to a large-scale study of protein complexes in the MAPK portion of the insulin signaling pathway from Drosophila cells. Dynamics were calculated under basal and stimulating conditions as fold changes. These experiments were performed in the context of a core service model with the user performing the TAP immunoprecipitation and the MS core performing the MS and informatics stops. The MS strategy showed excellent coverage of known components in addition to potentially novel interactions.


Subject(s)
Insulin/metabolism , Tandem Mass Spectrometry/methods , Animals , Biochemistry/methods , Computational Biology , Drosophila , Fourier Analysis , Ions , MAP Kinase Signaling System , Models, Biological , Protein Interaction Mapping , Proteome , Proteomics/methods , Signal Transduction , Software
8.
Cancer Res ; 65(9): 3837-45, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15867382

ABSTRACT

To gain a better understanding of the mechanism of action of the metal cation-containing chemotherapeutic drug motexafin gadolinium (MGd), gene expression profiling analyses were conducted on plateau phase human lung cancer (A549) cell cultures treated with MGd. Drug treatment elicited a highly specific response that manifested in elevated levels of metallothionein isoform and zinc transporter 1 (ZnT1) transcripts. A549 cultures incubated with MGd in the presence of exogenous zinc acetate displayed synergistic increases in the levels of intracellular free zinc, metallothionein transcripts, inhibition of thioredoxin reductase activity, and cell death. Similar effects were observed in PC3 prostate cancer and Ramos B-cell lymphoma cell lines. Intracellular free zinc levels increased in response to treatment with MGd in the absence of exogenous zinc, indicating that MGd can mobilize bound intracellular zinc. These findings lead us to suggest that an important component of the anticancer activity of MGd is related to its ability to disrupt zinc metabolism and alter cellular availability of zinc. This class of compounds may provide insight into the development of novel cancer drugs targeting control of intracellular free zinc and the roles that zinc and other metal cations play in biochemical pathways relevant to cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Metalloporphyrins/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Zinc/metabolism , Acetates/pharmacology , Cadmium/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Gene Expression/drug effects , Gene Expression Profiling , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/metabolism , Male , Neoplasms/genetics , Oxidation-Reduction , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Thioctic Acid/metabolism , Zinc Acetate/pharmacology
9.
J Mol Endocrinol ; 33(1): 175-93, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15291752

ABSTRACT

Glucocorticoid (GC) treatment for the management of autoimmune and inflammatory diseases is associated with decreased bone formation and increased risk for fracture. In MC3T3-E1 cell cultures, 0.1-1 microM dexamethasone (DEX) arrests development of the osteoblast phenotype when administration commences at a commitment stage around the time of confluency. To gain new insights into GC-induced osteoporosis, we performed microarray-based gene expression analysis of GC-arrested MC3T3-E1 cultures, 2.5 days after the administration of DEX. Of the >12 000 transcripts interrogated, 74 were up-regulated and 17 were down-regulated by at least 2.5-fold (P < or = 0.05). Some of these genes, such as Mmp13, Serum/GC-regulated kinase and Tieg, have previously been reported as GC-responsive. Others are shown here for the first time to respond to GCs. DEX strongly repressed Krox20/Egr2 at both the mRNA and the protein level. This is especially significant because mice lacking this transcription factor develop osteoporosis. The data also suggest that the bone morphogenetic protein (BMP) pathway, which is involved in regulating bone mass, and other pathways that influence BMP signaling, are abrogated by GCs: (i) DEX increased the mRNA levels of the BMP antagonists Follistatin and Dan; (ii) DEX increased the levels of p21 Rasgap3 and Ptpn16/MKP-1 mRNAs, negative regulators of the MAP kinase pathway; and (iii) DEX decreased Cox mRNA levels. DEX also increased thrombospondin mRNA levels, which negatively regulate bone mass in vivo, as well as the adipocytic marker Fkbp51. These and other observations disclose novel gene targets, whose regulation by GCs in osteoblasts may shed light on and provide new therapeutic approaches to osteoporosis.


Subject(s)
Dexamethasone/pharmacology , Gene Expression Profiling , Osteoblasts/drug effects , 3T3 Cells , Animals , Base Sequence , Blotting, Western , DNA Primers , Mice , Oligonucleotide Array Sequence Analysis , Osteoblasts/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics
10.
Nucleic Acids Res ; 32(5): e51, 2004 Mar 18.
Article in English | MEDLINE | ID: mdl-15031318

ABSTRACT

DNA microarrays are powerful tools for comparing gene expression profiles from closely related organisms. However, a single microarray design is frequently used in these studies. Therefore, the levels of certain transcripts can be grossly underestimated due to sequence differences between the transcripts and the arrayed DNA probes. Here, we seek to improve the sensitivity and specificity of oligonucleotide microarray-based gene expression analysis by using genomic sequence information to predict the hybridization efficiency of orthologous transcripts to a given microarray. To test our approach, we examine hybridization patterns from three Escherichia coli strains on E.coli K-12 MG1655 gene expression microarrays. We create electronic mask files to discard data from probes predicted to have poor hybridization sensitivity and specificity to cDNA targets from each strain. We increased the accuracy of gene expression analysis and identified genes that cannot be accurately interrogated in each strain using these microarrays. Overall, these studies provide guidelines for designing effective electronic masks for gene expression analysis in organisms where substantial genome sequence information is available.


Subject(s)
Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , DNA Probes , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Bacterial , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction
11.
Genome Res ; 13(7): 1619-30, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12840040

ABSTRACT

Although much is known about genetic variation in human and African great ape (chimpanzee, bonobo, and gorilla) genomes, substantially less is known about variation in gene-expression profiles within and among these species. This information is necessary for defining transcriptional regulatory networks that contribute to complex phenotypes unique to humans or the African great apes. We took a systematic approach to this problem by investigating gene-expression profiles in well-defined cell populations from humans, bonobos, and gorillas. By comparing these profiles from 18 human and 21 African great ape primary fibroblast cell lines, we found that gene-expression patterns could predict the species, but not the age, of the fibroblast donor. Several differentially expressed genes among human and African great ape fibroblasts involved the extracellular matrix, metabolic pathways, signal transduction, stress responses, as well as inherited overgrowth and neurological disorders. These gene-expression patterns could represent molecular adaptations that influenced the development of species-specific traits in humans and the African great apes.


Subject(s)
Fibroblasts/chemistry , Fibroblasts/metabolism , Gene Expression Profiling , Gene Expression Regulation/genetics , Hominidae/genetics , Africa , Animals , Blotting, Northern/methods , Blotting, Northern/statistics & numerical data , Brain Chemistry/genetics , Cells, Cultured , Chromosome Mapping/methods , Chromosome Mapping/statistics & numerical data , Cluster Analysis , Databases, Genetic , Gene Expression Profiling/methods , Gene Expression Profiling/statistics & numerical data , Gorilla gorilla/genetics , Humans , Pan paniscus/genetics , Pan troglodytes/genetics , Sequence Analysis, RNA/methods , Sequence Analysis, RNA/statistics & numerical data , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...