Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Transplant Direct ; 10(4): e1609, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38481967

ABSTRACT

Background: Brief normothermic machine perfusion is increasingly used to assess and recondition grafts before transplant. During normothermic machine perfusion, metabolic activity is typically maintained using red blood cell (RBC)-based solutions. However, the utilization of RBCs creates important logistical constraints. This study explored the feasibility of human kidney normothermic perfusion using William's E-based perfusate with no additional oxygen carrier. Methods: Sixteen human kidneys declined for transplant were perfused with a perfusion solution containing packed RBCs or William's E medium only for 6 h using a pressure-controlled system. The temperature was set at 37 °C. Renal artery resistance, oxygen extraction, metabolic activity, energy metabolism, and histological features were evaluated. Results: Baseline donor demographics were similar in both groups. Throughout perfusion, kidneys perfused with William's E exhibited improved renal flow (P = 0.041) but similar arterial resistance. Lactic acid levels remained higher in kidneys perfused with RBCs during the first 3 h of perfusion but were similar thereafter (P = 0.95 at 6 h). Throughout perfusion, kidneys from both groups exhibited comparable behavior regarding oxygen consumption (P = 0.41) and reconstitution of ATP tissue concentration (P = 0.55). Similarly, nicotinamide adenine dinucleotide levels were preserved during perfusion. There was no evidence of histological damage caused by either perfusate. Conclusions: In human kidneys, William's E medium provides a logistically convenient, off-the-shelf alternative to packed RBCs for up to 6 h of normothermic machine perfusion.

2.
J Clin Med ; 9(6)2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32549246

ABSTRACT

Access to liver transplantation continues to be hindered by the severe organ shortage. Extended-criteria donor livers could be used to expand the donor pool but are prone to ischemia-reperfusion injury (IRI) and post-transplant graft dysfunction. Ex situ machine perfusion may be used as a platform to rehabilitate discarded or extended-criteria livers prior to transplantation, though there is a lack of data guiding the utilization of different perfusion modalities and therapeutics. Since amino acid derivatives involved in inflammatory and antioxidant pathways are critical in IRI, we analyzed differences in amino acid metabolism in seven discarded non-steatotic human livers during normothermic- (NMP) and subnormothermic-machine perfusion (SNMP) using data from untargeted metabolomic profiling. We found notable differences in tryptophan, histamine, and glutathione metabolism. Greater tryptophan metabolism via the kynurenine pathway during NMP was indicated by significantly higher kynurenine and kynurenate tissue concentrations compared to pre-perfusion levels. Livers undergoing SNMP demonstrated impaired glutathione synthesis indicated by depletion of reduced and oxidized glutathione tissue concentrations. Notably, ATP and energy charge ratios were greater in livers during SNMP compared to NMP. Given these findings, several targeted therapeutic interventions are proposed to mitigate IRI during liver machine perfusion and optimize marginal liver grafts during SNMP and NMP.

3.
Nat Protoc ; 15(6): 2024-2040, 2020 06.
Article in English | MEDLINE | ID: mdl-32433625

ABSTRACT

Preservation of human organs at subzero temperatures has been an elusive goal for decades. The major complication hindering successful subzero preservation is the formation of ice at temperatures below freezing. Supercooling, or subzero non-freezing, preservation completely avoids ice formation at subzero temperatures. We previously showed that rat livers can be viably preserved three times longer by supercooling as compared to hypothermic preservation at +4 °C. Scalability of supercooling preservation to human organs was intrinsically limited because of volume-dependent stochastic ice formation at subzero temperatures. However, we recently adapted the rat preservation approach so it could be applied to larger organs. Here, we describe a supercooling protocol that averts freezing of human livers by minimizing air-liquid interfaces as favorable sites of ice nucleation and uses preconditioning with cryoprotective agents to depress the freezing point of the liver tissue. Human livers are homogeneously preconditioned during multiple machine perfusion stages at different temperatures. Including preparation, the protocol takes 31 h to complete. Using this protocol, human livers can be stored free of ice at -4 °C, which substantially extends the ex vivo life of the organ. To our knowledge, this is the first detailed protocol describing how to perform subzero preservation of human organs.


Subject(s)
Liver/physiology , Organ Preservation/methods , Cold Temperature , Cryoprotective Agents/chemistry , Equipment Design , Freezing , Humans , Ice/analysis , Liver/chemistry , Organ Preservation/instrumentation , Perfusion/instrumentation , Perfusion/methods
4.
PLoS One ; 15(1): e0228011, 2020.
Article in English | MEDLINE | ID: mdl-31978172

ABSTRACT

There continues to be a significant shortage of donor livers for transplantation. One impediment is the discard rate of fatty, or steatotic, livers because of their poor post-transplant function. Steatotic livers are prone to significant ischemia-reperfusion injury (IRI) and data regarding how best to improve the quality of steatotic livers is lacking. Herein, we use normothermic (37°C) machine perfusion in combination with metabolic and lipidomic profiling to elucidate deficiencies in metabolic pathways in steatotic livers, and to inform strategies for improving their function. During perfusion, energy cofactors increased in steatotic livers to a similar extent as non-steatotic livers, but there were significant deficits in anti-oxidant capacity, efficient energy utilization, and lipid metabolism. Steatotic livers appeared to oxidize fatty acids at a higher rate but favored ketone body production rather than energy regeneration via the tricyclic acid cycle. As a result, lactate clearance was slower and transaminase levels were higher in steatotic livers. Lipidomic profiling revealed ω-3 polyunsaturated fatty acids increased in non-steatotic livers to a greater extent than in steatotic livers. The novel use of metabolic and lipidomic profiling during ex situ normothermic machine perfusion has the potential to guide the resuscitation and rehabilitation of steatotic livers for transplantation.


Subject(s)
Fatty Liver/metabolism , Lipidomics , Metabolomics , Perfusion , Resuscitation , Temperature , Adenosine Triphosphate/biosynthesis , Bile Acids and Salts/metabolism , Fatty Acids/metabolism , Fatty Liver/pathology , Fatty Liver/physiopathology , Glucose/metabolism , Hemodynamics , Humans , Liver/pathology , Liver/physiopathology , Liver Function Tests , Oxidation-Reduction , Oxidative Stress , Vascular Resistance
5.
J Vis Exp ; (152)2019 10 25.
Article in English | MEDLINE | ID: mdl-31710044

ABSTRACT

Vitrification is a promising ice-free alternative for classic slow-freezing (at approximately 1 °C/min) cryopreservation of biological samples. Vitrification requires extremely fast cooling rates to achieve transition of water into the glass phase while avoiding injurious ice formation. Although pre-incubation with cryoprotective agents (CPA) can reduce the critical cooling rate of biological samples, high concentrations are generally needed to enable ice-free cryopreservation by vitrification. As a result, vitrification is hampered by CPA toxicity and restricted to small samples that can be cooled fast. It was recently demonstrated that these inherent limitations can be overcome by bulk droplet vitrification. Using this novel method, cells are first pre-incubated with a low intracellular CPA concentration. Leveraging rapid osmotic dehydration, the intracellular CPA is concentrated directly ahead of vitrification, without the need to fully equilibrate toxic CPA concentrations. The cellular dehydration is performed in a fluidic device and integrated with continuous high throughput generation of large sized droplets that are vitrified in liquid nitrogen. This ice-free cryopreservation method with minimal CPA toxicity is suitable for large cell quantities and results in increased hepatocyte viability and metabolic function as compared to classical slow-freezing cryopreservation. This manuscript describes the methods for successful bulk droplet vitrification in detail.


Subject(s)
Cryopreservation/methods , Cryoprotective Agents/chemistry , Hepatocytes/cytology , Vitrification , Freezing , Phase Transition , Water
6.
Metabolites ; 9(11)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31652927

ABSTRACT

There continues to be significant debate regarding the most effective mode of ex situ machine perfusion of livers for transplantation. Subnormothermic (SNMP) and normothermic machine perfusion (NMP) are two methods with different benefits. We examined the metabolomic profiles of discarded steatotic human livers during three hours of subnormothermic or normothermic machine perfusion. Steatotic livers regenerate higher stores of ATP during SNMP than NMP. However, there is a significant depletion of available glutathione during SNMP, likely due to an inability to overcome the high energy threshold needed to synthesize glutathione. This highlights the increased oxidative stress apparent in steatotic livers. Rescue of discarded steatotic livers with machine perfusion may require the optimization of redox status through repletion or supplementation of reducing agents.

7.
Nat Biotechnol ; 37(10): 1131-1136, 2019 10.
Article in English | MEDLINE | ID: mdl-31501557

ABSTRACT

The inability to preserve vascular organs beyond several hours contributes to the scarcity of organs for transplantation1,2. Standard hypothermic preservation at +4 °C (refs. 1,3) limits liver preservation to less than 12 h. Our group previously showed that supercooled ice-free storage at -6 °C can extend viable preservation of rat livers4,5 However, scaling supercooling preservation to human organs is intrinsically limited because of volume-dependent stochastic ice formation. Here, we describe an improved supercooling protocol that averts freezing of human livers by minimizing favorable sites of ice nucleation and homogeneous preconditioning with protective agents during machine perfusion. We show that human livers can be stored at -4 °C with supercooling followed by subnormothermic machine perfusion, effectively extending the ex vivo life of the organ by 27 h. We show that viability of livers before and after supercooling is unchanged, and that after supercooling livers can withstand the stress of simulated transplantation by ex vivo normothermic reperfusion with blood.


Subject(s)
Cold Temperature , Liver/physiology , Organ Preservation/methods , Humans , Organ Preservation Solutions , Perfusion , Tissue Survival
8.
Am J Transplant ; 19(10): 2814-2824, 2019 10.
Article in English | MEDLINE | ID: mdl-30938927

ABSTRACT

Normothermic machine perfusion presents a novel platform for pretransplant assessment and reconditioning of kidney grafts. Maintaining the metabolic activity of a preserved graft at physiologic levels requires an adequate oxygen supply, typically delivered by crystalloid solutions supplemented with red blood cells. In this study, we explored the feasibility of using a synthetic hemoglobin-based oxygen carrier (HBOC) in human kidney normothermic perfusion. Fourteen discarded human kidneys were perfused for 6 hours at a mean temperature of 37°C using a pressure-controlled system. Kidneys were perfused with a perfusion solution supplemented with either HBOC (n = 7) or packed red blood cells (PRBC) (n = 7) to increase oxygen-carrying capacity. Renal artery resistance, oxygen extraction, metabolic activity, energy stores, and histological features were evaluated. Throughout perfusion, kidneys from both groups exhibited comparable behavior regarding vascular flow (P = .66), oxygen consumption (P = .88), and reconstitution of tissue adenosine triphosphate (P = .057). Lactic acid levels were significantly higher in kidneys perfused with PRBC (P = .007). Histological findings were comparable between groups, and there was no evidence of histological damage caused by the HBOC. This feasibility experiment demonstrates that a HBOC solution can offer a logistically more convenient off-the-shelf alternative to PRBC in normothermic machine perfusion of human kidneys.


Subject(s)
Blood Substitutes/pharmacology , Hemoglobins/pharmacology , Kidney/drug effects , Organ Preservation Solutions/chemistry , Organ Preservation/methods , Oxygen/metabolism , Reperfusion Injury/prevention & control , Adult , Aged , Cells, Cultured , Erythrocytes/chemistry , Extracorporeal Circulation , Female , Follow-Up Studies , Humans , Male , Middle Aged , Oxygen Consumption , Perfusion , Tissue Survival , Tissue and Organ Harvesting/methods
9.
Langmuir ; 35(23): 7354-7363, 2019 06 11.
Article in English | MEDLINE | ID: mdl-30514081

ABSTRACT

Loss of hepatocyte viability and metabolic function after cryopreservation is still a major issue. Although vitrification is a promising alternative, it has generally been proven to be unsuitable for vitrification of large cell volumes which is required for clinical applications. Here, we propose a novel bulk droplet (3-5 mm diameter) vitrification method which allows high throughput volumes (4 mL/min), while using a low preincubated CPA concentration (15% v/v) to minimize toxicity and loss of cell viability and function. We used rapid (1.25 s) osmotic dehydration to concentrate a low preincubated intracellular CPA concentration ahead of vitrification, without the need of fully equilibrating toxic CPA concentrations. We compared direct postpreservation viability, long-term viability, and metabolic function of bulk droplet vitrified, cryopreserved, and fresh hepatocytes. Simulations and cooling rate measurements confirmed an adequate concentration of the intracellular CPA concentration (up to 8.53 M) after dehydration in combination with high cooling rates (960-1320 °C/min) for successful vitrification. In comparison to cryopreserved hepatocytes, bulk droplet vitrified hepatocytes had a significantly higher viability, directly after preservation and after 1 day in culture. Moreover, bulk droplet vitrified hepatocytes had evidently better morphology and showed significantly higher metabolic activity than cryopreserved hepatocytes in long-term collagen sandwich cultures. In conclusion, we developed a novel bulk droplet vitrification method of which we validated the theoretical background and demonstrated the feasibility to use this method to vitrify large cell volumes. Moreover, we showed that this method results in improved hepatocyte viability and metabolic function as compared to cryopreservation.


Subject(s)
Cryopreservation/instrumentation , Hepatocytes/cytology , Animals , Cell Membrane/metabolism , Cell Survival , Feasibility Studies , Female , Hydrodynamics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...