Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mar Biotechnol (NY) ; 25(6): 1057-1075, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37878212

ABSTRACT

Rohu, Labeo rohita, is one of the most important aquaculture species in the Indian subcontinent. Understanding the molecular-level physiological responses to thermal stress or climate change is essential. In the present work, transcriptome sequencing was carried out in the muscle tissue of the rohu in response to heat stress (35 °C) in comparison with the control (28 °C). A total of 125 Gb of sequence data was generated, and the raw-reads were filtered and trimmed, which resulted in 484 million quality reads. Reference-based assembly of reads was performed using L. rohita genome, and a total of 90.17% of reads were successfully mapped. A total of 37,462 contigs were assembled with an N50 value of 1854. The differential expression analysis revealed a total of 107 differentially expressed genes (DEGs) (15 up-, 37 down-, and 55 neutrally regulated) as compared to the control group (Log2FC > 2, P < 0.05). Gene enrichment analysis of DEGs indicates that transcripts were associated with molecular, biological, and cellular activities. The randomly selected differentially expressed transcripts were validated by RT-qPCR and found consistent expression patterns in line with the RNA-seq data. Several transcripts such as SERPINE1(HSP47), HSP70, HSP90alpha, Rano class II histocompatibility A beta, PGC-1 and ERR-induced regulator, proto-oncogene c-Fos, myozenin2, alpha-crystallin B chain-like protein, angiopoietin-like protein 8, and acetyl-CoA carboxylases have been identified in muscle tissue of rohu that are associated with stress/immunity. This study identified the key biomarker SERPINE1 (HSP47), which showed significant upregulation (~ 2- to threefold) in muscle tissue of rohu exposed to high temperature. This study can pave a path for the identification of stress-responsive biomarkers linked with thermal adaptations in the farmed carps.


Subject(s)
Carps , Cyprinidae , Animals , Transcriptome , Cyprinidae/genetics , RNA-Seq , Genes, Regulator
2.
Gene ; 864: 147294, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36858189

ABSTRACT

Precise estimation of genome size (GS) is vital for various genomic studies, such as deciding genome sequencing depth, genome assembly, biodiversity documentation, evolution, genetic disorders studies, duplication events etc. Animal Genome Size Database provides GS of over 2050 fish species, which ranges from 0.35 pg in pufferfish (Tetraodon nigroviridis) to 132.83 pg in marbled lungfish (Protopterus aethiopicus). The GS of majority of the fishes inhabiting waters of Indian subcontinent are still missing. In present study, we estimated GS of 51 freshwater teleost (31 commercially important, 7 vulnerable and 13 ornamental species) that ranged from 0.58 pg in banded gourami (Trichogaster fasciata) to 1.92 pg in scribbled goby (Awaous grammepomus). Substantial variation in GS was observed within the same fish orders (0.64-1.45 pg in cypriniformes, 0.70-1.41 pg in siluriformes and 0.58-1.92 pg in perciformes). We examined the relationship between the GS, chromosome number and body length across all the fishes. Body length was found to be associated with GS, whereas no relationship was noticed between the GS and the chromosome number. The analysis using ancestral information revealed haploid chromosome number 25, 27 and 24 for the most recent common ancestor of cypriniformes, siluriformes and perciformes, respectively. The study led to generation of new records on GS of 43 fish species and revalidated records for 8 species. The finding is valuable resource for further research in the areas of fish genomics, molecular ecology and evolutionary conservation genetics.


Subject(s)
Catfishes , Cypriniformes , Perciformes , Animals , Genome Size , Evolution, Molecular , Fishes/genetics , Chromosomes/genetics , Genomics , Perciformes/genetics , Catfishes/genetics , Cypriniformes/genetics , Phylogeny
3.
DNA Res ; 28(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33416875

ABSTRACT

The walking catfish Clarias magur (Hamilton, 1822) (magur) is an important catfish species inhabiting the Indian subcontinent. It is considered as a highly nutritious food fish and has the capability to walk to some distance, and survive a considerable period without water. Assembly, scaffolding and several rounds of iterations resulted in 3,484 scaffolds covering ∼94% of estimated genome with 9.88 Mb largest scaffold, and N50 1.31 Mb. The genome possessed 23,748 predicted protein encoding genes with annotation of 19,279 orthologous genes. A total of 166 orthologous groups represented by 222 genes were found to be unique for this species. The Computational Analysis of gene Family Evolution (CAFE) analysis revealed expansion of 207 gene families and 100 gene families have rapidly evolved. Genes specific to important environmental and terrestrial adaptation, viz. urea cycle, vision, locomotion, olfactory and vomeronasal receptors, immune system, anti-microbial properties, mucus, thermoregulation, osmoregulation, air-breathing, detoxification, etc. were identified and critically analysed. The analysis clearly indicated that C. magur genome possessed several unique and duplicate genes similar to that of terrestrial or amphibians' counterparts in comparison to other teleostean species. The genome information will be useful in conservation genetics, not only for this species but will also be very helpful in such studies in other catfishes.


Subject(s)
Catfishes/genetics , Catfishes/physiology , Fish Proteins/genetics , Genome , Animals , Evolution, Molecular , Genomics , High-Throughput Nucleotide Sequencing , Male , Phylogeny , Whole Genome Sequencing
5.
Fish Physiol Biochem ; 46(4): 1337-1347, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32232614

ABSTRACT

Danio rerio, zebrafish, has been widely used as a non-mammalian vertebrate model organism in various studies. The present research describes to develop and characterize a new cell line from a wild strain Indian zebrafish native to Brahmaputra River, Assam, India. The new cell line designated as DRCF was developed from the caudal fin of D. rerio. The cell line was successfully subcultured up to 31 passages. Growth studies revealed that cell growth of DRCF was optimal at 28 °C in L-15 medium supplemented with 20% FBS. Molecular characterization of the DRCF cell line using mitochondrial genes namely cytochrome oxidase subunit I gene (COI) and 16S rRNA authenticated the true origin of the cell line. The chromosome analysis of the DRCF cell line expressed its 50 diploid chromosome number of D. rerio. The immunocytochemical characterization of the cell line exhibited its fibroblastic morphology. The expression of the green fluorescent protein (GFP) following transfection revealed the suitability of the cell line for transfection studies.


Subject(s)
Animal Fins/cytology , Zebrafish/anatomy & histology , Animals , Cell Line , Cell Proliferation , Chromosomes , Electron Transport Complex IV/genetics , Genes, Mitochondrial , Immunohistochemistry , India , Microscopy, Phase-Contrast , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Rivers , Seasons , Stem Cells/cytology , Transfection , Zebrafish/genetics
6.
Chemosphere ; 211: 316-323, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30077112

ABSTRACT

The present study explored the induced genotoxicity (DNA damage) due to organophosphate pesticide profenofos (PFF) after in vivo exposure in freshwater fish Channa punctatus by the use of Comet assay and Random amplified polymorphic DNA (RAPD). The fish specimens were exposed to sub-lethal concentration of 1.16 ppb (50% of LC50) in a semi-static system and the DNA damage was assessed in exposed and control fish. The DNA damage was measured in erythrocytes as the percentage of DNA damage in Comet tails and RAPD technique using oligonucleotide primers of fish specimens exposed to the sublethal concentrations of PFF. The most informative primers in terms of variation in RAPD profile were found to be OPA-01, OPA-03, OPB-02, OPB-01 and OPA-13. Appearance/disappearance of bands and increase/decrease in the band intensity were evident in the RAPD profile of fish specimens exposed to PFF as compared to the control. Findings from the present study suggest that the potential impacts of assessment of the genotoxic impact of pesticide on fish.


Subject(s)
Comet Assay/methods , DNA Damage/drug effects , DNA/analysis , Fishes/genetics , Insecticides/toxicity , Organothiophosphates/toxicity , Random Amplified Polymorphic DNA Technique/methods , Animals , Fishes/growth & development , Fresh Water
7.
J Hered ; 109(3): 339-343, 2018 03 16.
Article in English | MEDLINE | ID: mdl-28992259

ABSTRACT

Mining and characterization of Simple Sequence Repeat (SSR) markers from whole genomes provide valuable information about biological significance of SSR distribution and also facilitate development of markers for genetic analysis. Whole genome sequencing (WGS)-SSR Annotation Tool (WGSSAT) is a graphical user interface pipeline developed using Java Netbeans and Perl scripts which facilitates in simplifying the process of SSR mining and characterization. WGSSAT takes input in FASTA format and automates the prediction of genes, noncoding RNA (ncRNA), core genes, repeats and SSRs from whole genomes followed by mapping of the predicted SSRs onto a genome (classified according to genes, ncRNA, repeats, exonic, intronic, and core gene region) along with primer identification and mining of cross-species markers. The program also generates a detailed statistical report along with visualization of mapped SSRs, genes, core genes, and RNAs. The features of WGSSAT were demonstrated using Takifugu rubripes data. This yielded a total of 139 057 SSR, out of which 113 703 SSR primer pairs were uniquely amplified in silico onto a T. rubripes (fugu) genome. Out of 113 703 mined SSRs, 81 463 were from coding region (including 4286 exonic and 77 177 intronic), 7 from RNA, 267 from core genes of fugu, whereas 105 641 SSR and 601 SSR primer pairs were uniquely mapped onto the medaka genome. WGSSAT is tested under Ubuntu Linux. The source code, documentation, user manual, example dataset and scripts are available online at https://sourceforge.net/projects/wgssat-nbfgr.


Subject(s)
Computational Biology/methods , Genetic Markers , Genomics/methods , Microsatellite Repeats , Software , Animals , Takifugu/genetics
8.
Drug Chem Toxicol ; 37(1): 48-54, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23829824

ABSTRACT

Labeo rohita (rohu) is one of most important of Indian major carps, which is highly ranked among the important freshwater aquaculture species in the world. Heavy metals are major risk factors for aquatic health, which are biomagnified through the food chain. The present study was carried out to investigate the effect of different divalent salts of two heavy metals, such as zinc (ZnCl(2), ZnSO(4) and ZnNO(3)) and cadmium (CdCl(2) and CdSO(4)), in an established fish cell line, RF developed from fin tissue of L. rohita. The RF cell line was used for assessment of heavy metal cytotoxicity through various endpoint assays, including maximum tolerated dose (MTD) determination, 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, neutral red (NR) uptake assay, and Coomassie brilliant blue (CBB) assay. Results revealed that these heavy metal salts were cytotoxic to the RF cell line at varied concentrations. MTD values were found to be 1.563, 3.125, 6.25, 12.5 and 25 mg/L for CdCl(2), CdSO(4), ZnCl(2), Zn(NO(3))(2) and ZnSO(4), respectively. The half-maximal inhibitory concentration values calculated by MTT, NR and CB assay were 53.83 ± 7.02, 58.03 ± 9.12 and 79.20 ± 15.27 for ZnSO(4), 26.44 ± 7.01, 36.60 ± 7.82 and 155.6 ± 14.75 for Zn(NO(3))(2), 20.26 ± 17.95, 16.94 ± 7.05 and 87.54 ± 7.58 for ZnCl(2), 5.166 ± 0.57, 15 ± 1 and 41.80 ± 8.38 for CdSO(4) and 4.966 ± 0.56, 9.56 ± 1.73 and 20.93 ± 4.47 for CdCl(2). This study establishes the RF cell line as an in vitro tool for assessment and monitoring of heavy metal concentration in the aquatic environment.


Subject(s)
Cadmium/toxicity , Carps/metabolism , Environmental Monitoring/methods , Zinc/toxicity , Animals , Cell Line , Dose-Response Relationship, Drug , Maximum Tolerated Dose , Neutral Red , Rosaniline Dyes , Tetrazolium Salts , Thiazoles , Toxicity Tests
9.
Micron ; 49: 40-5, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23587674

ABSTRACT

Characterization of the major (18S) and minor (5S) ribosomal RNA genes were carried out in three commercially important Indian major carp (IMC) species, viz. Catla catla, Labeo rohita and Cirrhinus mrigala along with their physical localizations using dual colour fluorescence in situ hybridization. The diploid chromosome number in the above carps was confirmed to be 50 with inter-species karyo-morphological variations. The 18S rDNA signals were observed on 3 pair of chromosomes in C. catla and L. rohita, and two pairs in C. mrigala. The 5S rDNA signal was found on single pair of chromosome in all the species with variation in their position on chromosomes. The sequencing of 18S rDNA generated 1804, 1805 and 1805 bp long fragments, respectively, in C. catla, L. rohita and C. mrigala with more than 98% sequence identity among them. Similarly, sequencing of 5S rDNA generated 191 bp long fragments in the three species with 100% identity in coding region and 23.2% overall variability in non-transcribed spacer region. Thus, these molecular markers could be used as species-specific markers for taxonomic identification and might help in understanding the genetic diversity, genome organization and karyotype evolution of these species.


Subject(s)
Cyprinidae/genetics , Physical Chromosome Mapping , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 5S/genetics , Animals , In Situ Hybridization, Fluorescence , India , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
10.
Drug Chem Toxicol ; 36(4): 451-60, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23534497

ABSTRACT

Fish, being an important native of the aquatic ecosystem, are exposed to multipollution states and are therefore considered as model organisms for ecotoxicological studies of aquatic pollutants, including metal toxicity. We investigated oxidative stress (OS) in liver, kidney and gill tissues through antioxidant enzyme activities and genotoxicity induced in whole blood and gill tissues through comet assay and micronucleus (MN) test in Cyprinus carpio after 96-hour in vivo static exposure to potassium dichromate at three sublethal (SL) test concentrations, including SL-I [93.95 mg/L, i.e. one quarter of half-maximal lethal concentration (LC50)], SL-II (187.9 mg/L, i.e. one half of LC50), and SL-III (281.85 mg/L, i.e. three quarters of LC50), along with a control. The 96-hour LC50 value for potassium dichromate was estimated to be 375.8 mg/L in a static system in the test species. Tissues samples were collected at 24, 48, 72 and 96 hours postexposure. Results indicated that the exposed fish experienced OS as characterized by significant (p < 0.05) variation in antioxidant enzyme activities, as compared to the control. Activities of superoxide dismutase and glutathione peroxidase increased, whereas activity of catalase decreased with the progression of the experiment. The mean percent DNA damage in comet tail and MN induction in gills and whole blood showed a concentration-dependent increase up to 96-hour exposure. The findings of this study would be helpful in organ-specific risk assessment of Cr(VI)-induced OS and genotoxicity in fishes.


Subject(s)
Carps/metabolism , Chromium/toxicity , Mutagenicity Tests/methods , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity , Animals , Catalase/metabolism , Comet Assay , Gills/metabolism , Glutathione Peroxidase/metabolism , India , Lethal Dose 50 , Micronucleus Tests , Potassium Dichromate/toxicity , Superoxide Dismutase/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...