Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Cell Biol ; 91(5): 295-302, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24032678

ABSTRACT

Adiabatic differential scanning calorimetry was used to investigate the effect of NADP+ on the irreversible thermal denaturation of the nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Streptococcus mutans. The GAPN-NADP+ binary complex showed a strongly decreased thermal stability, with a difference of about 20 °C between the temperatures of the thermal transition peak maxima of the complex and the free protein. This finding was similar to the previously described thermal destabilization of GAPN upon binding of inorganic phosphate to the substrate binding site and can be interpreted as the shift of the equilibrium between 2 conformers of tetrameric GAPN upon addition of the coenzyme. Single amino acid substitution, known to abolish the NADP+ binding, cancelled the calorimetric effect of the coenzyme. GAPN thermal inactivation was considerably decelerated in the presence of NADP+ showing that the apparent change in stability of the active centre can be the opposite to that of the whole protein molecule. NADP+ could also reactivate the inactive GAPN* species, obtained by the heating of the apoenzyme below the thermal denaturation transition temperature. These effects may reflect a mechanism that provides GAPN the sufficient flexibility for the earlier observed profound active site reorganizations required during the catalytic cycle. The elevated thermal stability of the apoenzyme may, in turn, be important for maintaining a constant level of active GAPN--an enzyme that is known to be crucial for the effective supply of the reducing equivalents in S. mutans and its ability to grow under aerobic conditions.


Subject(s)
Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)/metabolism , NADP/metabolism , Protein Denaturation , Streptococcus mutans/enzymology , Amino Acid Substitution , Binding Sites , Calorimetry, Differential Scanning , Catalysis , Enzyme Stability , Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)/chemistry , Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)/genetics , Phosphorylation , Protein Structure, Quaternary , Temperature
2.
Biochemistry ; 41(24): 7556-64, 2002 Jun 18.
Article in English | MEDLINE | ID: mdl-12056886

ABSTRACT

Tetrameric phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Bacillus stearothermophilus can be described as a dimer of dimers with three nonequivalent interfaces. To investigate the contribution of intra- and intersubunit interactions to GAPDH thermostability, 10 residues located either at the cofactor domain (amino acids 1-148 and 313-333) or at the catalytic domain (amino acids 149-312) were mutated and the thermal unfolding of the mutants was studied by differential scanning calorimetry in the absence and presence of saturating concentrations of NAD. Disruptions of intrasubunit interactions lead to a drastic decrease in thermostability of the N313T, Y283V, and W310F mutants. Moreover, for the N313T mutant, a weakening of cooperative interactions between the catalytic and the cofactor domains and an inefficient binding of NAD are observed. This is likely the consequences of modification or loss of the hydrogen bonding network associating N313 and residues 236-238 and N313 and the nicotinamide carboxyamide of NAD, respectively. For the residues Y283 and W310, which are involved in stacking hydrophobic interactions, mutating both positions does not affect the efficiency of NAD binding. This shows that the factors involved in the thermostability of the tetrameric apo GAPDH are then different from those induced by NAD binding. Disruption of intersubunit hydrogen bonds between the catalytic domain and the NAD-binding domain of a neighboring subunit also leads to a significant destabilization of the apo tetrameric form as observed for the D282G mutant. Moreover, no efficient binding of NAD is observed. Both results are likely the consequence of a loss of hydrogen bonds across the P-axis and the Q-axis between D282 and R197 and between D282 and R52, respectively. Similar results, i.e., a destabilizing effect and inefficient NAD binding, are observed with the T34Q/T39S/L43Q mutant in which steric hindrance is introduced at the S-loop of the R-axis-related subunit via mutations at the adenosine subsite. The dimeric form of the D282G mutant exhibits a single partial heat absorption peak, whereas the Y46G/R52G mutant which exists only as a dimer shows two peaks. Taking into account the recent small-angle X-ray scattering studies which suggested that the dimeric form of the D282G mutant and of the dimeric Y46G/R52G mutant are of the O-R and O-P types, respectively (Vachette, unpublished results), we propose that the presence of one or two peaks in thermal unfolding of dimers is a signature of the dimer type.


Subject(s)
Geobacillus stearothermophilus/enzymology , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/chemistry , Hot Temperature , Protein Folding , Apoenzymes/chemistry , Apoenzymes/genetics , Catalytic Domain/genetics , Dimerization , Enzyme Stability/genetics , Geobacillus stearothermophilus/genetics , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , Holoenzymes/chemistry , Holoenzymes/genetics , Mutagenesis, Site-Directed , Peptide Fragments/chemistry , Peptide Fragments/genetics , Protein Denaturation/genetics , Recombinant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...