Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Med Chem ; 280: 116927, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39378827

ABSTRACT

Antibody radionuclide conjugates are an emerging modality for targeted imaging and potent therapy of disseminated disease. Coupling of radionuclides to monoclonal antibodies (mAbs) is typically achieved by applying non-site-specific labelling techniques. With the ambition of reducing variability, increasing labelling efficacy and stability, several site-specific conjugation strategies have been developed in recent years for toxin- and fluorophore-mAb conjugates. In this study, we studied two site-specific labelling strategies for the conjugation of the macrocyclic chelating agent, DOTA, to the anti-Leucine Rich Repeat Containing 15 (LRRC15) mAb DUNP19. Specifically, one approach utilized a DOTA-bearing peptide (FcIII) with a strong affinity for the fragment crystallizable (Fc) domain of the human IgG1 of DUNP19 (DUNP19LF-FcIII-DOTASS), while the other leveraged a chemo-enzymatic technique to substitute the N-linked bi-antennary oligosaccharides in the human IgG1 Fc domain with DOTA (DUNP19LF-gly-DOTASS). To assess if these methods impact the antibody's binding properties and targeting efficacy, comparative in vitro and in vivo studies of the generated DUNP19-conjugates were performed. While the LRRC15 binding of both radioimmunoconjugates remained intact, the conjugation methods had different impacts on their abilities to interact with FcRn and FcγRs. In vitro assessments of DUNP19LF-FcIII-DOTASS and DUNP19LF-gly-DOTASS demonstrated markedly decreased affinity for FcRn and FcγRIIIa (CD16), respectively. DUNP19LF-FcIII-DOTASS demonstrated increased blood and tissue kinetics in vivo, confirming loss of FcRn binding. While the ablated FcγR interaction of DUNP19LF-gly-DOTASS had no immediate impact on in vivo biodistribution, reduced immunotherapeutic effect can be expected in future studies as a result of reduced NK-cells interaction. In conclusion, our findings underscore the necessity for meticulous consideration and evaluation of mAb labelling strategies, extending beyond mere conjugation efficiency and radiolabeling yields. Notably, site-specific labelling methods were found to significantly influence the immunological impact of Fc interactions. Therefore, it is of paramount importance to consider the intended diagnostic or therapeutic application of the construct and to adopt conjugation strategies that ensure the preservation of critical pharmacological properties and functionality of the antibody in use.

2.
ACS Omega ; 9(34): 36122-36133, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39220525

ABSTRACT

Targeting the gastrin-releasing peptide receptor (GRPR) with the bombesin analogue RM26, a 9 aa peptide, has been a promising strategy for cancer theranostics, with recent success in radionuclide imaging of prostate cancer. However, therapeutic application of the short peptide RM26 would require a longer half-life to prevent fast clearance from the circulation. Conjugation to an albumin-binding domain (ABD) is a viable strategy to extend the in vivo half-life of peptides and proteins. We previously reported an ABD-fused RM26 peptide targeting GRPR (ABD-RM26 Gen 1) that showed prolonged and stable tumor uptake over 144 h; however, the observed high kidney uptake indicated that the conjugate's binding to albumin was reduced and that this could be an obstacle for its use as a delivery system for targeted therapy, especially for radiotherapy. Here, we have designed, produced, and preclinically evaluated a series of novel ABD-RM26 conjugates with the aim of improving the conjugate's binding to albumin and decreasing the kidney uptake. We developed three second-generation constructs with varying formats, differing in the relative positions of the targeting moieties and the radionuclide chelator. The produced conjugates were radiolabeled with indium-111 and evaluated in vitro and in vivo. All constructs displayed improved biophysical characteristics, biodistribution, and lower kidney uptake compared to previously reported first-generation molecules. The ABD-RM26 Gen 2A conjugate showed the best biodistribution profile with a nearly 6-fold reduction in kidney uptake. However, the ABD-RM26 Gen 2A conjugate's binding to GRPR was compromised. This conjugate's assembly of albumin- and GRPR-binding moieties might be used for further development of drug conjugates for targeted therapy/radiotherapy of GRPR-expressing cancers.

3.
Mol Imaging Biol ; 25(6): 1104-1114, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37052759

ABSTRACT

PURPOSE: Site-specific approaches to bioconjugation produce well-defined and homogeneous immunoconjugates with potential for superior in vivo behavior compared to analogs synthesized using traditional, stochastic methods. The possibility of incorporating photoaffinity chemistry into a site-specific bioconjugation strategy is particularly enticing, as it could simplify and accelerate the preparation of homogeneous immunoconjugates for the clinic. In this investigation, we report the synthesis, in vitro characterization, and in vivo evaluation of a site-specifically modified, 89Zr-labeled radioimmunoconjugate created via the reaction between an mAb and an Fc-binding protein bearing a photoactivatable 4-benzoylphenylalanine residue. PROCEDURES: A variant of the Fc-binding Z domain of protein A containing a photoactivatable, 4-benzoylphenylalanine residue - Z(35BPA) - was modified with desferrioxamine (DFO), combined with the A33 antigen-targeting mAb huA33, and irradiated with UV light. The resulting immunoconjugate - DFOZ(35BPA)-huA33 - was purified and characterized via SDS-PAGE, MALDI-ToF mass spectrometry, surface plasmon resonance, and flow cytometry. The radiolabeling of DFOZ(35BPA)-huA33 was optimized to produce [89Zr]Zr-DFOZ(35BPA)-huA33, and the immunoreactivity of the radioimmunoconjugate was determined with SW1222 human colorectal cancer cells. Finally, the in vivo performance of [89Zr]Zr-DFOZ(35BPA)-huA33 in mice bearing subcutaneous SW1222 xenografts was interrogated via PET imaging and biodistribution experiments and compared to that of a stochastically labeled control radioimmunoconjugate, [89Zr]Zr-DFO-huA33. RESULTS: HuA33 was site-specifically modified with Z(35BPA)-DFO, producing an immunoconjugate with on average 1 DFO/mAb, high in vitro stability, and high affinity for its target. [89Zr]Zr-DFOZ(35BPA)-huA33 was synthesized in 95% radiochemical yield and exhibited a specific activity of 2 mCi/mg and an immunoreactive fraction of ~ 0.85. PET imaging and biodistribution experiments revealed that high concentrations of the radioimmunoconjugate accumulated in tumor tissue (i.e., ~ 40%ID/g at 120 h p.i.) but also that the Z(35BPA)-bearing immunoPET probe produced higher uptake in the liver, spleen, and kidneys than its stochastically modified cousin, [89Zr]Zr-DFO-huA33. CONCLUSIONS: Photoaffinity chemistry and an Fc-binding variant of the Z domain were successfully leveraged to create a novel site-specific strategy for the synthesis of radioimmunoconjugates. The probe synthesized using this method - DFOZ(35BPA)-huA33 - was well-defined and homogeneous, and the resulting radioimmunoconjugate ([89Zr]Zr-DFOZ(35BPA)-huA33) boasted high specific activity, stability, and immunoreactivity. While the site-specifically modified radioimmunoconjugate produced high activity concentrations in tumor tissue, it also yielded higher uptake in healthy organs than a stochastically modified analog, suggesting that optimization of this system is necessary prior to clinical translation.


Subject(s)
Immunoconjugates , Neoplasms , Humans , Animals , Mice , Immunoconjugates/chemistry , Tissue Distribution , Positron-Emission Tomography/methods , Zirconium/chemistry , Cell Line, Tumor , Deferoxamine/chemistry
4.
Biosens Bioelectron ; 227: 115142, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36805937

ABSTRACT

High heterogeneity in the membrane protein expression of small extracellular vesicles (sEVs) means that bulk methods relying on antibody-based capture for expression analysis have a drawback that each type of antibody may capture a different sub-population. An improved approach is to capture a representative sEV population, without any bias, and then perform a multiplexed protein expression analysis on this population. However, such a possibility has been largely limited to fluorescence-based methods. Here, we present a novel electrostatic labelling strategy and a microchip-based all-electric method for membrane protein analysis of sEVs. The method allows us to profile multiple surface proteins on the captured sEVs using alternating charge labels. It also permits the comparison of expression levels in different sEV-subtypes. The proof of concept was tested by capturing sEVs both non-specifically (unbiased) as well as via anti-CD9 capture probes (biased), and then profiling the expression levels of various surface proteins using the charge labelled antibodies. The method is the first of its kind, demonstrating an all-electrical and microchip based method that allows for unbiased analysis of sEV membrane protein expression, comparison of expression levels in different sEV subsets, and fractional estimation of different sEV sub-populations. These results were also validated in parallel using a single-sEV fluorescence technique.


Subject(s)
Biosensing Techniques , Extracellular Vesicles , Static Electricity , Electricity , Antibodies , Membrane Proteins
5.
J Extracell Vesicles ; 11(11): e12277, 2022 11.
Article in English | MEDLINE | ID: mdl-36329610

ABSTRACT

Small extracellular vesicles (sEVs) have in recent years evolved as a source of biomarkers for disease diagnosis and therapeutic follow up. sEV samples derived from multicellular organisms exhibit a high heterogeneous repertoire of vesicles which current methods based on ensemble measurements cannot capture. In this work we present droplet barcode sequencing for protein analysis (DBS-Pro) to profile surface proteins on individual sEVs, facilitating identification of sEV-subtypes within and between samples. The method allows for analysis of multiple proteins through use of DNA barcoded affinity reagents and sequencing as readout. High throughput single vesicle profiling is enabled through compartmentalization of individual sEVs in emulsion droplets followed by droplet barcoding through PCR. In this proof-of-concept study we demonstrate that DBS-Pro allows for analysis of single sEVs, with a mixing rate below 2%. A total of over 120,000 individual sEVs obtained from a NSCLC cell line and from malignant pleural effusion (MPE) fluid of NSCLC patients have been analyzed based on their surface proteins. We also show that the method enables single vesicle surface protein profiling and by extension characterization of sEV-subtypes, which is essential to identify the cellular origin of vesicles in heterogenous samples.


Subject(s)
Extracellular Vesicles , Humans , Extracellular Vesicles/genetics , Biomarkers/metabolism , Cell Line , Membrane Proteins/metabolism
6.
ACS Appl Mater Interfaces ; 13(36): 42513-42521, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34473477

ABSTRACT

We present an approach to improve the detection sensitivity of a streaming current-based biosensor for membrane protein profiling of small extracellular vesicles (sEVs). The experimental approach, supported by theoretical investigation, exploits electrostatic charge contrast between the sensor surface and target analytes to enhance the detection sensitivity. We first demonstrate the feasibility of the approach using different chemical functionalization schemes to modulate the zeta potential of the sensor surface in a range -16.0 to -32.8 mV. Thereafter, we examine the sensitivity of the sensor surface across this range of zeta potential to determine the optimal functionalization scheme. The limit of detection (LOD) varied by 2 orders of magnitude across this range, reaching a value of 4.9 × 106 particles/mL for the best performing surface for CD9. We then used the optimized surface to profile CD9, EGFR, and PD-L1 surface proteins of sEVs derived from non-small cell lung cancer (NSCLC) cell-line H1975, before and after treatment with EGFR tyrosine kinase inhibitors, as well as sEVs derived from pleural effusion fluid of NSCLC adenocarcinoma patients. Our results show the feasibility to monitor CD9, EGFR, and PD-L1 expression on the sEV surface, illustrating a good prospect of the method for clinical application.


Subject(s)
Biosensing Techniques/methods , Extracellular Vesicles/chemistry , Static Electricity , Antibodies, Immobilized/immunology , B7-H1 Antigen/analysis , B7-H1 Antigen/metabolism , Cell Line, Tumor , Electrochemical Techniques , ErbB Receptors/analysis , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Extracellular Vesicles/drug effects , Extracellular Vesicles/immunology , Humans , Limit of Detection , Protein Kinase Inhibitors/pharmacology , Tetraspanin 29/analysis , Tetraspanin 29/metabolism
7.
Biosens Bioelectron ; 176: 112917, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33421763

ABSTRACT

An electrical immuno-sandwich assay utilizing an electrokinetic-based streaming current method for signal transduction is proposed. The method records the changes in streaming current, first when a target molecule binds to the capture probes immobilized on the inner surface of a silica micro-capillary, and then when the detection probes interact with the bound target molecules on the surface. The difference in signals in these two steps constitute the response of the assay, which offers better target selectivity and a linear concentration dependent response for a target concentration within the range 0.2-100 nM. The proof of concept is demonstrated by detecting different concentrations of Immunoglobulin G (IgG) in both phosphate buffered saline (PBS) and spiked in E. coli cell lysate. A superior target specificity for the sandwich assay compared to the corresponding direct assay is demonstrated along with a limit of detection of 90 pM in PBS. The prospect of improving the detection sensitivity was theoretically analysed, which indicated that the charge contrast between the target and the detection probe plays a crucial role in determining the signal. This aspect was then experimentally validated by modulating the zeta potential of the detection probe by conjugating negatively charged DNA oligonucleotides. The length of the conjugated DNA was varied from 5 to 30 nucleotides, altering the zeta potential of the detection probe from -9.3 ± 0.8 mV to -20.1 ± 0.9 mV. The measurements showed a clear and consistent enhancement of detection signal as a function of DNA lengths. The results presented here conclusively demonstrate the role of electric charge in detection sensitivity as well as the prospect for further improvement. The study therefore is a step forward in developing highly selective and sensitive electrokinetic assays for possible application in clinical investigations.


Subject(s)
Biosensing Techniques , DNA , DNA Probes/genetics , Escherichia coli/genetics , Sensitivity and Specificity
8.
Pharmaceutics ; 12(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081166

ABSTRACT

The targeting of gastrin-releasing peptide receptors (GRPR) was recently proposed for targeted therapy, e.g., radiotherapy. Multiple and frequent injections of peptide-based therapeutic agents would be required due to rapid blood clearance. By conjugation of the GRPR antagonist RM26 (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) to an ABD (albumin-binding domain), we aimed to extend the blood circulation of peptides. The synthesized conjugate DOTA-ABD-RM26 was labelled with indium-111 and evaluated in vitro and in vivo. The labelled conjugate was stable in PBS and retained specificity and its antagonistic function against GRPR. The half-maximal inhibitory concentration (IC50) of natIn-DOTA-ABD-RM26 in the presence of human serum albumin was 49 ± 5 nM. [111In]In-DOTA-ABD-RM26 had a significantly longer residence time in blood and in tumors (without a significant decrease of up to 144 h pi) than the parental RM26 peptide. We conclude that the ABD-RM26 conjugate can be used for GRPR-targeted therapy and delivery of cytotoxic drugs. However, the undesirable elevated activity uptake in kidneys abolishes its use for radionuclide therapy. This proof-of-principle study justified further optimization of the molecular design of the ABD-RM26 conjugate.

SELECTION OF CITATIONS
SEARCH DETAIL