Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Neurol ; 518(18): 3752-70, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20653032

ABSTRACT

Transforming growth factors-beta1 (TGF-beta1), -2, and -3 form a small group of related proteins involved in the regulation of proliferation, differentiation, and survival of various cell types. Recently, TGF-betas were also demonstrated to be neuroprotective. In the present study, we investigated their distribution in the rat brain as well as their expression following middle cerebral artery occlusion. Probes were produced for all types of TGF-betas, and in situ hybridization was performed. We demonstrated high TGF-beta1 expression in cerebral cortex, hippocampus, central amygdaloid nucleus, medial preoptic area, hypothalamic paraventricular nucleus, substantia nigra, brainstem reticular formation and motoneurons, and area postrema. In contrast, TGF-beta2 was abundantly expressed in deep cortical layers, dentate gyrus, midline thalamic nuclei, posterior hypothalamic area and mamillary body, superior olive, areas of monoaminergic neurons, spinal trigeminal nucleus, dorsal vagal complex, cerebellum, and choroid plexus, and a high level of TGF-beta3 mRNA was found in cerebral cortex, hippocampus, basal amygdaloid nuclei, lateral septal nucleus, several thalamic nuclei, arcuate and supramamillary nuclei, superior colliculus, superior olive, brainstem reticular formation and motoneurons, area postrema, and inferior olive. Focal brain ischemia induced TGF-betas with markedly different expression patterns. TGF-beta1 was induced in the penumbral region of cortex and striatum, whereas TGF-beta2 and -beta3 were induced in different layers of the ipsilateral cortex. The expression of the subtypes of TGF-betas in different brain regions suggests that they are involved in the regulation of different neurons and bind to different latent TGF-beta binding proteins. Furthermore, they might have subtype-specific functions following ischemic attack.


Subject(s)
Brain Ischemia/metabolism , Brain , RNA, Messenger/metabolism , Transforming Growth Factor beta1 , Transforming Growth Factor beta2 , Transforming Growth Factor beta3 , Animals , Brain/anatomy & histology , Brain/pathology , Brain/physiology , Brain Ischemia/pathology , Infarction, Middle Cerebral Artery , Male , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rats , Rats, Wistar , Tissue Distribution , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta2/genetics , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta3/genetics , Transforming Growth Factor beta3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...